Quantum entanglement distribution using a magnetic field sensor

被引:4
|
作者
Schaffry, M. [1 ]
Benjamin, S. C. [1 ,2 ]
Matsuzaki, Y. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
基金
新加坡国家研究基金会;
关键词
NANOSCALE RESOLUTION; NUCLEAR-SPIN; DIAMOND; COMPUTATION; NANODIAMONDS; CENTERS; QUBITS; STATE;
D O I
10.1088/1367-2630/14/2/023046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Sensors based on crystal defects, especially nitrogen vacancy (NV) centres in nanodiamond, can achieve detection of single magnetic moments. Here, we show that this exquisite control can be utilized to entangle remote electronic spins for applications in quantum computing; the mobile sensor provides a 'flying' qubit while the act of sensing the local field constitutes a two-qubit projective measurement. Thus, the NV centre mediates entanglement between an array of well-separated (and thus well-controlled) qubits. Our calculations establish that such a device would be remarkably robust against realistic issues such as dephasing, inaccurate timing and both positioning errors and multimodal vibrations in the sensor tip. Interestingly, the fact that this form of flying qubit is readily measurable allows one to convert certain classes of unknown errors into heralded failures, which are relatively easy to deal with using established quantum information processing techniques. We also provide calculations establishing the feasibility of performing a demonstrator experiment with a fixed sensor in the immediate future.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Opportunistic Entanglement Distribution for the Quantum Internet
    Gyongyosi, Laszlo
    Imre, Sandor
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [32] Quantum entanglement assisted key distribution
    Tang, Ke
    Ji, Ping
    Zhiang, Xiaowen
    QUANTUM INFORMATION AND COMPUTATION V, 2007, 6573
  • [33] Magnetic shielding of quantum entanglement states
    Del Cima, O. M.
    Franco, D. H. T.
    Silva, M. M.
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2019, 6 (02) : 141 - 150
  • [34] All-Optical Quantum Sensor of the Magnetic Field Deflection
    Dmitriev, S. P.
    Pazgalev, A. S.
    Petrenko, M., V
    Vershovskii, A. K.
    OPTICS AND SPECTROSCOPY, 2019, 127 (04) : 742 - 745
  • [35] Magnetic shielding of quantum entanglement states
    O. M. Del Cima
    D. H. T. Franco
    M. M. Silva
    Quantum Studies: Mathematics and Foundations, 2019, 6 : 141 - 150
  • [36] Quantum entanglement of anisotropic magnetic nanodots
    Skomski, R
    Istomin, AY
    Starace, AF
    Sellmyer, DJ
    PHYSICAL REVIEW A, 2004, 70 (06): : 062307 - 1
  • [37] All-Optical Quantum Sensor of the Magnetic Field Deflection
    S. P. Dmitriev
    A. S. Pazgalev
    M. V. Petrenko
    A. K. Vershovskii
    Optics and Spectroscopy, 2019, 127 : 742 - 745
  • [38] Entanglement in relativistic quantum field theory
    Shi, Y
    PHYSICAL REVIEW D, 2004, 70 (10): : 105001 - 1
  • [39] Entanglement of a Quantum Field with a Dispersive Medium
    Klich, Israel
    PHYSICAL REVIEW LETTERS, 2012, 109 (06)
  • [40] Entanglement entropy and quantum field theory
    Calabrese, P
    Cardy, J
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,