Quantum entanglement distribution using a magnetic field sensor

被引:4
|
作者
Schaffry, M. [1 ]
Benjamin, S. C. [1 ,2 ]
Matsuzaki, Y. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
基金
新加坡国家研究基金会;
关键词
NANOSCALE RESOLUTION; NUCLEAR-SPIN; DIAMOND; COMPUTATION; NANODIAMONDS; CENTERS; QUBITS; STATE;
D O I
10.1088/1367-2630/14/2/023046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Sensors based on crystal defects, especially nitrogen vacancy (NV) centres in nanodiamond, can achieve detection of single magnetic moments. Here, we show that this exquisite control can be utilized to entangle remote electronic spins for applications in quantum computing; the mobile sensor provides a 'flying' qubit while the act of sensing the local field constitutes a two-qubit projective measurement. Thus, the NV centre mediates entanglement between an array of well-separated (and thus well-controlled) qubits. Our calculations establish that such a device would be remarkably robust against realistic issues such as dephasing, inaccurate timing and both positioning errors and multimodal vibrations in the sensor tip. Interestingly, the fact that this form of flying qubit is readily measurable allows one to convert certain classes of unknown errors into heralded failures, which are relatively easy to deal with using established quantum information processing techniques. We also provide calculations establishing the feasibility of performing a demonstrator experiment with a fixed sensor in the immediate future.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Entanglement Negativity in Quantum Field Theory
    Calabrese, Pasquale
    Cardy, John
    Tonni, Erik
    PHYSICAL REVIEW LETTERS, 2012, 109 (13)
  • [42] The Entanglement Structure of Quantum Field Systems
    Lam, Vincent
    INTERNATIONAL STUDIES IN THE PHILOSOPHY OF SCIENCE, 2013, 27 (01) : 59 - 72
  • [43] Analysis of magnetic field distribution in a hall sensor based protection
    Miedzinski, B.
    Dzierzanowski, W.
    Habrych, M.
    Wang, X.
    Xu, Lj.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2008, (04) : 35 - 38
  • [44] Quantum Entanglement in Spin Dimers: Effects of a Magnetic Field and Heterogeneous g-Factors
    Adamyan, Z. A.
    Muradyan, S. A.
    Ohanyan, V. R.
    JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2020, 55 (04) : 292 - 298
  • [45] Sensitivity of entanglement decay of quantum-dot spin qubits to the external magnetic field
    Mazurek, Pawel
    Roszak, Katarzyna
    Chhajlany, Ravindra W.
    Horodecki, Pawel
    PHYSICAL REVIEW A, 2014, 89 (06):
  • [46] Quantum Entanglement in Spin Dimers: Effects of a Magnetic Field and Heterogeneous g-Factors
    Z. A. Adamyan
    S. A. Muradyan
    V. R. Ohanyan
    Journal of Contemporary Physics (Armenian Academy of Sciences), 2020, 55 : 292 - 298
  • [47] Entanglement as an indicator of a geometrical crossover in a two-electron quantum dot in a magnetic field
    Nazmitdinov, R. G.
    Simonovic, N. S.
    JETP LETTERS, 2013, 97 (04) : 199 - 204
  • [48] Einstein-Podolsky-Rosen entanglement and quantum nonlocality for an electron in a uniform magnetic field
    Fan, HY
    Chen, ZB
    CHINESE PHYSICS LETTERS, 2000, 17 (05) : 316 - 318
  • [49] Entanglement as an indicator of a geometrical crossover in a two-electron quantum dot in a magnetic field
    R. G. Nazmitdinov
    N. S. Simonović
    JETP Letters, 2013, 97 : 199 - 204
  • [50] Beating the Standard Quantum Limit Electronic Field Sensing by Simultaneously Using Quantum Entanglement and Squeezing
    Feng, X. N.
    Zhang, M.
    Wei, L. F.
    PHYSICAL REVIEW LETTERS, 2024, 132 (22)