Unsupervised image segmentation with Gaussian Pairwise Markov Fields

被引:4
|
作者
Gangloff, Hugo [1 ,2 ]
Courbot, Jean-Baptiste [3 ]
Monfrini, Emmanuel [4 ]
Collet, Christophe [1 ]
机构
[1] Univ Strasbourg, CNRS, ICube, UMR 7357, 300 Bd Sebastien Brant, F-67400 Illkirch Graffenstaden, France
[2] GEPROVAS, Strasbourg, France
[3] Univ Haute Alsace, IRIMAS, UR 7499, Mulhouse, France
[4] Inst Polytech Paris, Telecom SudParis, SAMOVAR, Palaiseau, France
关键词
Unsupervised image segmentation; Pairwise Markov Fields; Gaussian Markov Fields; Parameter estimation;
D O I
10.1016/j.csda.2021.107178
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modeling strongly correlated random variables is a critical task in the context of latent variable models. A new probabilistic model, called Gaussian Pairwise Markov Field, is presented to generalize existing Markov Fields latent variables models, and to introduce more correlations between variables. This is done by considering the correlations within Gaussian Markov Random Fields models which are much richer than in the classical Markov Field models. The assets of the Gaussian Pairwise Markov Field model are explained. In particular, it offers a generalization of the classical Markov Field modelization that is highlighted. The new model is also considered in the practical case of unsupervised segmentation of images corrupted by long-range spatially-correlated noise, producing interesting new results. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Texture segmentation of SAR image using multiresolution pairwise Markov model
    Liu, Bao-Li
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE INFORMATION COMPUTING AND AUTOMATION, VOLS 1-3, 2008, : 1348 - 1351
  • [32] Segmentation of Rumex obtusifolius using Gaussian Markov random fields
    Hiremath, Santosh
    Tolpekin, Valentyn A.
    van der Heijden, Gerie
    Stein, Alfred
    MACHINE VISION AND APPLICATIONS, 2013, 24 (04) : 845 - 854
  • [33] Segmentation of Rumex obtusifolius using Gaussian Markov random fields
    Santosh Hiremath
    Valentyn A. Tolpekin
    Gerie van der Heijden
    Alfred Stein
    Machine Vision and Applications, 2013, 24 : 845 - 854
  • [34] Texture segmentation using Gaussian Markov Random Fields and LEGION
    Cesmeli, E
    Wang, DL
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 1529 - 1534
  • [35] Unsupervised color image segmentation based on Gaussian mixture model
    Wu, YM
    Yang, XY
    Chan, KL
    ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, 2003, : 541 - 544
  • [36] Estimation of fuzzy gaussian mixture and unsupervised statistical image segmentation
    Caillol, H
    Pieczynski, W
    Hillion, A
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (03) : 425 - 440
  • [37] Color image segmentation through unsupervised Gaussian mixture models
    Penalver, Antonio
    Escolano, Francisco
    Saez, Juan M.
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA-SBIA 2006, PROCEEDINGS, 2006, 4140 : 149 - 158
  • [38] Unsupervised segmentation of non stationary images with non Gaussian correlated noise using triplet Markov fields and the Pearson system
    Benboudjema, Dalila
    Pieczynski, Wojciech
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 1949 - 1952
  • [39] Unsupervised Learning of Gaussian Mixture Model with Application to Image Segmentation
    Li Bo
    Liu Wenju
    Dou Lihua
    CHINESE JOURNAL OF ELECTRONICS, 2010, 19 (03): : 451 - 456
  • [40] Statistical shape description using Gaussian Markov random fields and its application to medical image segmentation
    Neumann, A
    Lorenz, C
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 192 - 203