Texture segmentation using Gaussian Markov Random Fields and LEGION

被引:0
|
作者
Cesmeli, E
Wang, DL
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An image segmentation method is proposed for texture analysis. The method is composed of two main parts. The first part determines a novel set of texture features based on Gaussian Markov Random Field (GMRF). Unlike other GMRF-based methods, our method is nor limited by a fixed set of texture types. The second part is LEGION (Locally Excitatory, Globally Inhibitory Oscillator Networks) which is a 2D array of neural oscillators. The coupling strengths between neighboring oscillators are calculated based on texture feature differences. When LEGION is simulated the oscillators corresponding to the same texture tend to oscillate in synchrony, whereas different texture regions tend to attain different phases. Results demonstrating the success of our method on real texture images are provided.
引用
收藏
页码:1529 / 1534
页数:6
相关论文
共 50 条
  • [1] Texture segmentation using Gaussian-Markov random fields and neural oscillator networks
    Çesmeli, E
    Wang, DL
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (02): : 394 - 404
  • [2] Restored texture segmentation using Markov random fields
    Kinge, Sanjaykumar
    Rani, B. Sheela
    Sutaone, Mukul
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (06) : 10063 - 10089
  • [3] Adaptive volumetric texture segmentation based on Gaussian Markov random fields features
    Almakady, Yasseen
    Mahmoodi, Sasan
    Bennett, Michael
    [J]. PATTERN RECOGNITION LETTERS, 2020, 140 : 101 - 108
  • [4] Gaussian Markov Random Fields-Based Features for Volumetric Texture Segmentation
    Almakady, Yasseen
    Mahmoodi, Sasan
    Bennett, Michael
    [J]. 2019 2ND IEEE CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2019), 2019, : 212 - 215
  • [5] Segmentation of Rumex obtusifolius using Gaussian Markov random fields
    Hiremath, Santosh
    Tolpekin, Valentyn A.
    van der Heijden, Gerie
    Stein, Alfred
    [J]. MACHINE VISION AND APPLICATIONS, 2013, 24 (04) : 845 - 854
  • [6] Segmentation of Rumex obtusifolius using Gaussian Markov random fields
    Santosh Hiremath
    Valentyn A. Tolpekin
    Gerie van der Heijden
    Alfred Stein
    [J]. Machine Vision and Applications, 2013, 24 : 845 - 854
  • [7] Infrared Texture Simulation Using Gaussian-Markov Random Fields
    Xiao-peng Shao
    Xiao-ming Zhao
    Jun Xu
    Jian-qi Zhang
    [J]. International Journal of Infrared and Millimeter Waves, 2004, 25 : 1699 - 1710
  • [8] Infrared texture simulation using Gaussian-Markov random fields
    Shao, XP
    Zhao, XM
    Xu, J
    Zhang, JQ
    [J]. INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2004, 25 (11): : 1699 - 1710
  • [9] Texture segmentation of images on the basis of Markov random fields
    Kovtun, I.V.
    [J]. Upravlyayushchie Sistemy i Mashiny, 2003, (04): : 46 - 56
  • [10] Multiscale Bayesian texture segmentation using neural networks and Markov random fields
    Kim, Tae Hyung
    Eom, Il Kyu
    Kim, Yoo Shin
    [J]. NEURAL COMPUTING & APPLICATIONS, 2009, 18 (02): : 141 - 155