Texture segmentation using Gaussian Markov Random Fields and LEGION

被引:0
|
作者
Cesmeli, E
Wang, DL
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An image segmentation method is proposed for texture analysis. The method is composed of two main parts. The first part determines a novel set of texture features based on Gaussian Markov Random Field (GMRF). Unlike other GMRF-based methods, our method is nor limited by a fixed set of texture types. The second part is LEGION (Locally Excitatory, Globally Inhibitory Oscillator Networks) which is a 2D array of neural oscillators. The coupling strengths between neighboring oscillators are calculated based on texture feature differences. When LEGION is simulated the oscillators corresponding to the same texture tend to oscillate in synchrony, whereas different texture regions tend to attain different phases. Results demonstrating the success of our method on real texture images are provided.
引用
收藏
页码:1529 / 1534
页数:6
相关论文
共 50 条
  • [41] Adaptive color image segmentation using Markov random fields
    Wesolkowski, S
    Fieguth, P
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 769 - 772
  • [42] COLOR IMAGE SEGMENTATION USING MARKOV RANDOM-FIELDS
    DAILY, MJ
    IMAGE UNDERSTANDING WORKSHOP /, 1989, : 552 - +
  • [43] Handwritten document segmentation using hidden Markov random fields
    Nicolas, S
    Kessentini, Y
    Paquet, T
    Heutte, L
    EIGHTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 212 - 216
  • [44] Segmentation of radar imagery using the Gaussian Markov random field model
    Dong, Y
    Forester, BC
    Milne, AK
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1999, 20 (08) : 1617 - 1639
  • [45] Segmentation of SAR imagery using the Gaussian Markov random field model
    Yong, Y
    Cao, YF
    Hong, S
    2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 1977 - 1980
  • [46] MARKOV RANDOM-FIELDS FOR TEXTURE CLASSIFICATION
    CHEN, CC
    HUANG, CL
    PATTERN RECOGNITION LETTERS, 1993, 14 (11) : 907 - 914
  • [47] Approximating hidden Gaussian Markov random fields
    Rue, H
    Steinsland, I
    Erland, S
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 877 - 892
  • [48] MARKOV PROPERTY FOR GENERALIZED GAUSSIAN RANDOM FIELDS
    KALLIANPUR, G
    MANDREKA.V
    ANNALES DE L INSTITUT FOURIER, 1974, 24 (02) : 143 - 167
  • [49] INNOVATION PROBLEM FOR GAUSSIAN MARKOV RANDOM FIELDS
    DOBRUSHIN, RL
    SURGAILIS, D
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 49 (03): : 275 - 291
  • [50] Nonstationary Spatial Gaussian Markov Random Fields
    Yue, Yu
    Speckman, Paul L.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (01) : 96 - 116