Unsupervised image segmentation with Gaussian Pairwise Markov Fields

被引:4
|
作者
Gangloff, Hugo [1 ,2 ]
Courbot, Jean-Baptiste [3 ]
Monfrini, Emmanuel [4 ]
Collet, Christophe [1 ]
机构
[1] Univ Strasbourg, CNRS, ICube, UMR 7357, 300 Bd Sebastien Brant, F-67400 Illkirch Graffenstaden, France
[2] GEPROVAS, Strasbourg, France
[3] Univ Haute Alsace, IRIMAS, UR 7499, Mulhouse, France
[4] Inst Polytech Paris, Telecom SudParis, SAMOVAR, Palaiseau, France
关键词
Unsupervised image segmentation; Pairwise Markov Fields; Gaussian Markov Fields; Parameter estimation;
D O I
10.1016/j.csda.2021.107178
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modeling strongly correlated random variables is a critical task in the context of latent variable models. A new probabilistic model, called Gaussian Pairwise Markov Field, is presented to generalize existing Markov Fields latent variables models, and to introduce more correlations between variables. This is done by considering the correlations within Gaussian Markov Random Fields models which are much richer than in the classical Markov Field models. The assets of the Gaussian Pairwise Markov Field model are explained. In particular, it offers a generalization of the classical Markov Field modelization that is highlighted. The new model is also considered in the practical case of unsupervised segmentation of images corrupted by long-range spatially-correlated noise, producing interesting new results. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Unsupervised statistical segmentation of nonstationary images using triplet Markov fields
    Benboudjema, Dalila
    Pieczynski, Wojciech
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (08) : 1367 - 1378
  • [42] A guide to unsupervised image segmentation of mCT-scanned cellular metals with mixture modelling and Markov random fields
    Panic, Branislav
    Borovinsek, Matej
    Vesenjak, Matej
    Oman, Simon
    Nagode, Marko
    MATERIALS & DESIGN, 2024, 239
  • [43] Unsupervised SAR Image Segmentation Using Higher Order Neighborhood-Based Triplet Markov Fields Model
    Wang, Fan
    Wu, Yan
    Zhang, Qiang
    Zhao, Wei
    Li, Ming
    Liao, Guisheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (08): : 5193 - 5205
  • [44] ORIENTED TRIPLET MARKOV FIELDS FOR HYPERSPECTRAL IMAGE SEGMENTATION
    Courbot, Jean-Baptiste
    Monfrini, Emmanuel
    Mazet, Vincent
    Collet, Christophe
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [45] Statistical image segmentation using triplet Markov fields
    Pieczynski, W
    Benboudjema, D
    Lanchantin, P
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VIII, 2003, 4885 : 92 - 101
  • [46] Double Markov random fields and Bayesian image segmentation
    Melas, DE
    Wilson, SP
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 357 - 365
  • [47] Extended Markov random fields for predictive image segmentation
    Stolkin, R.
    Hodgetts, M.
    Greig, A.
    Gilby, J.
    PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION, 2007, : 208 - +
  • [48] UNSUPERVISED RESTORATION IN GAUSSIAN PAIRWISE MIXTURE MODEL
    Derrode, Stephane
    Pieczynski, Wojciech
    19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 854 - 858
  • [49] Unsupervised sonar image segmentation method based on Markov random field
    Ye, Xiufen
    Zhang, Yuanke
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2015, 36 (04): : 516 - 521
  • [50] Unsupervised multiband image segmentation using hidden Markov quadtree and copulas
    Flitti, F
    Collet, C
    Joannic-Chardin, A
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 1821 - 1824