Unsupervised image segmentation with Gaussian Pairwise Markov Fields

被引:4
|
作者
Gangloff, Hugo [1 ,2 ]
Courbot, Jean-Baptiste [3 ]
Monfrini, Emmanuel [4 ]
Collet, Christophe [1 ]
机构
[1] Univ Strasbourg, CNRS, ICube, UMR 7357, 300 Bd Sebastien Brant, F-67400 Illkirch Graffenstaden, France
[2] GEPROVAS, Strasbourg, France
[3] Univ Haute Alsace, IRIMAS, UR 7499, Mulhouse, France
[4] Inst Polytech Paris, Telecom SudParis, SAMOVAR, Palaiseau, France
关键词
Unsupervised image segmentation; Pairwise Markov Fields; Gaussian Markov Fields; Parameter estimation;
D O I
10.1016/j.csda.2021.107178
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modeling strongly correlated random variables is a critical task in the context of latent variable models. A new probabilistic model, called Gaussian Pairwise Markov Field, is presented to generalize existing Markov Fields latent variables models, and to introduce more correlations between variables. This is done by considering the correlations within Gaussian Markov Random Fields models which are much richer than in the classical Markov Field models. The assets of the Gaussian Pairwise Markov Field model are explained. In particular, it offers a generalization of the classical Markov Field modelization that is highlighted. The new model is also considered in the practical case of unsupervised segmentation of images corrupted by long-range spatially-correlated noise, producing interesting new results. (C) 2021 Elsevier B.V. All rights reserved.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [21] PARAMETER ESTIMATION IN CONDITIONALLY GAUSSIAN PAIRWISE MARKOV SWITCHING MODELS AND UNSUPERVISED SMOOTHING
    Zheng, Fei
    Derrode, Stephane
    Pieczynski, Wojciech
    2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [22] UNSUPERVISED IMAGE SEGMENTATION WITH SPATIAL TRIPLET MARKOV TREES
    Gangloff, Hugo
    Courbot, Jean-Baptiste
    Monfrini, Emmanuel
    Collet, Christophe
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1790 - 1794
  • [23] SAR image segmentation using generalized pairwise Markov chains
    Derrode, S
    Pieczynski, W
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VIII, 2003, 4885 : 80 - 91
  • [24] Unsupervised Segmentation of Markov Random Fields Corrupted by Nonstationary Noise
    Habbouchi, Ahmed
    Boudaren, Mohamed El Yazid
    Aissani, Amar
    Pieczynski, Wojciech
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (11) : 1607 - 1611
  • [25] Transformed Gaussian Random Fields for Unsupervised Image Deconvolution
    Courbot, Jean-Baptiste
    Colicchio, Bruno
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2702 - 2706
  • [26] Unsupervised SAR Image Segmentation Using Ambiguity Label Information Fusion in Triplet Markov Fields Model
    Wang, Fan
    Wu, Yan
    Zhang, Peng
    Zhang, Qingjun
    Li, Ming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (09) : 1479 - 1483
  • [27] Unsupervised image segmentation using Markov random field models
    Barker, SA
    Rayner, PJW
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, 1223 : 165 - 178
  • [28] Unsupervised image segmentation via Markov trees and complex wavelets
    Shaffrey, CW
    Kingsbury, NG
    Jermyn, IH
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 801 - 804
  • [29] Unsupervised image segmentation using Markov random field models
    Barker, SA
    Rayner, PJW
    PATTERN RECOGNITION, 2000, 33 (04) : 587 - 602
  • [30] FUZZY RANDOM-FIELDS AND UNSUPERVISED IMAGE SEGMENTATION
    CAILLOL, H
    HILLION, A
    PIECZYNSKI, W
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1993, 31 (04): : 801 - 810