Low Default Credit Scoring using Two-class Non-parametric Kernel Density Estimation

被引:0
|
作者
Rademeyer, Estian [1 ]
van der Walt, Christiaan M. [2 ]
de Waal, Alta [1 ]
机构
[1] Univ Pretoria, Dept Stat, Pretoria, South Africa
[2] CSIR, Modelling & Digital Sci, Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the performance of two-class classification credit scoring data sets with low default ratios. The standard two-class parametric Gaussian and non-parametric Parzen classifiers are extended, using Bayes' rule, to include either a class imbalance or a Bernoulli prior. This is done with the aim of addressing the low default probability problem. Furthermore, the performance of Parzen classification with Silverman and Minimum Leave-one-out Entropy (MLE) Gaussian kernel bandwidth estimation is also investigated.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] TWO-CLASS Trees for Non-Parametric Regression Analysis
    Siciliano, Roberta
    Aria, Massimo
    [J]. CLASSIFICATION AND MULTIVARIATE ANALYSIS FOR COMPLEX DATA STRUCTURES, 2011, : 63 - 71
  • [2] Non-parametric approach to ICA using kernel density estimation
    Sengupta, K
    Burman, P
    [J]. 2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I, PROCEEDINGS, 2003, : 749 - 752
  • [3] Using Non-parametric Count Model for Credit Scoring
    Mestiri, Sami
    Farhat, Abdeljelil
    [J]. JOURNAL OF QUANTITATIVE ECONOMICS, 2021, 19 (01) : 39 - 49
  • [4] Using Non-parametric Count Model for Credit Scoring
    Sami Mestiri
    Abdeljelil Farhat
    [J]. Journal of Quantitative Economics, 2021, 19 : 39 - 49
  • [5] Kernel estimation of density for credit scoring
    Namur Univ
    [J]. Neural Network World, 2000, 10 (01) : 279 - 286
  • [6] A non-parametric approach for independent component analysis using kernel density estimation
    Sengupta, K
    Burman, P
    Sharma, R
    [J]. PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, 2004, : 667 - 672
  • [7] A non-parametric approach for independent component analysis using kernel density estimation
    Sengupta, Kuntal
    Burman, Prabir
    Sharma, Rajeev
    [J]. Proc IEEE Comput Soc Conf Comput Vision Pattern Recognit, 1600, (II667-II672):
  • [8] Supervised non-parametric discretization based on Kernel density estimation
    Luis Flores, Jose
    Calvo, Borja
    Perez, Aritz
    [J]. PATTERN RECOGNITION LETTERS, 2019, 128 : 496 - 504
  • [9] Non-Parametric Kernel Density Estimation for the Prediction of Neoadjuvant Chemotherapy Outcomes
    Wanderley, Maria Fernanda B.
    Braga, Antonio P.
    Mendes, Eduardo M. A. M.
    Natowicz, Rene
    Rouzier, Roman
    [J]. 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 1775 - 1778
  • [10] Non-parametric kernel estimation of the coefficient of a diffusion
    Jacod, J
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2000, 27 (01) : 83 - 96