Non-Parametric Kernel Density Estimation for the Prediction of Neoadjuvant Chemotherapy Outcomes

被引:1
|
作者
Wanderley, Maria Fernanda B. [1 ]
Braga, Antonio P. [1 ]
Mendes, Eduardo M. A. M. [1 ]
Natowicz, Rene [2 ]
Rouzier, Roman [3 ]
机构
[1] Univ Fed Minas Gerais, Dept Engn Eletron, Belo Horizonte, MG, Brazil
[2] Univ Paris Est, ESIEE, Dept Informat, Paris, France
[3] Hop Tenon, Serv gynecol, Paris, France
关键词
D O I
10.1109/IEMBS.2010.5626748
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper we propose an application of local statistical models to the problem of identifying patients with pathologic complete response (PCR) to neoadjuvant chemotherapy. The idea of using local models is to split the input space (with data from PCR and NoPCR patients) and build a model for each partition. After the construction of the models we used bayesian classifiers and logistic regression to classify patients in the two classes.
引用
收藏
页码:1775 / 1778
页数:4
相关论文
共 50 条
  • [1] Wind Power Prediction Based on Kalman Filter and Non-parametric Kernel Density Estimation
    Li, Daoqing
    Hussain, Adil
    Yu, Xiaodong
    Liu, Shulin
    Yu, Xuanzhou
    Zhang, Kai
    [J]. 2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 1319 - 1324
  • [2] Non-parametric approach to ICA using kernel density estimation
    Sengupta, K
    Burman, P
    [J]. 2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I, PROCEEDINGS, 2003, : 749 - 752
  • [3] Supervised non-parametric discretization based on Kernel density estimation
    Luis Flores, Jose
    Calvo, Borja
    Perez, Aritz
    [J]. PATTERN RECOGNITION LETTERS, 2019, 128 : 496 - 504
  • [4] Prediction error analysis of wind power based on clustering and non-parametric kernel density estimation
    Zhang, Xiaoying
    Zhang, Xiaomin
    Liao, Shun
    Chen, Wei
    Wang, Xiaolan
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2019, 40 (12): : 3594 - 3604
  • [5] Wind Power Prediction Errors Model and Algorithm Based on Non-parametric Kernel Density Estimation
    Liao, Guodong
    Ming, Jie
    Wei, Boyuan
    Xiang, Hongji
    Jiang, Nan
    Ai, Peng
    Dai, Chaohua
    Xie, Xintao
    Li, Mengjiao
    [J]. 2015 5TH INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION AND RESTRUCTURING AND POWER TECHNOLOGIES (DRPT 2015), 2015, : 1864 - 1868
  • [6] Correction method of wind speed prediction based on non-parametric kernel density estimation and numerical weather prediction
    Liu, Xiaonan
    Zhou, Jiegui
    Jia, Hongjie
    Mu, Yunfei
    Wang, Tong
    Dai, Chensong
    [J]. Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2017, 37 (10): : 15 - 20
  • [7] Non-parametric kernel estimation of the coefficient of a diffusion
    Jacod, J
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2000, 27 (01) : 83 - 96
  • [8] A non-parametric approach for independent component analysis using kernel density estimation
    Sengupta, K
    Burman, P
    Sharma, R
    [J]. PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, 2004, : 667 - 672
  • [9] TRUS image segmentation with non-parametric kernel density estimation shape prior
    Wu, Pengfei
    Liu, Yiguang
    Li, Yongzhong
    Shi, Yongtao
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2013, 8 (06) : 764 - 771
  • [10] A non-parametric approach for independent component analysis using kernel density estimation
    Sengupta, Kuntal
    Burman, Prabir
    Sharma, Rajeev
    [J]. Proc IEEE Comput Soc Conf Comput Vision Pattern Recognit, 1600, (II667-II672):