Supervised non-parametric discretization based on Kernel density estimation

被引:7
|
作者
Luis Flores, Jose [1 ,3 ]
Calvo, Borja [1 ]
Perez, Aritz [2 ]
机构
[1] Univ Basque Country, UPV EHU, Dept Comp Sci & Artificial Intelligence, Intelligent Syst Grp, Manuel De Lardizabal 20018, Donostia San Se, Spain
[2] Basque Ctr Appl Math, Mazarredo Zumarkalea 48009, Bilbo, Spain
[3] IK4 Ikerlan Technol Res Ctr, Dependable Embedded Syst Area, Gipuzkoa 20500, Spain
关键词
Discretization; Supervised; Non-parametric; Kernel density; CHI2; ALGORITHM; CLASSIFICATION;
D O I
10.1016/j.patrec.2019.10.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, machine learning algorithms can be found in many applications where the classifiers play a key role. In this context, discretizing continuous attributes is a common step previous to classification tasks, the main goal being to retain as much discriminative information as possible. In this paper, we propose a supervised univariate non-parametric discretization algorithm which allows the use of a given supervised score criterion for selecting the best cut points. The candidate cut points are evaluated by computing the selected score value using kernel density estimation. The computational complexity of the proposed procedure is O(NlogN), where N is the length of the data. Our proposed algorithm generates a low complexity in discretization policies while retaining the discriminative information of the original continuous variables. In order to assess the validity of the proposed method, a set of real and artificial datasets has been used and the results show that the algorithm provides competitive results in terms of performance, a low complexity in the discretization policies and a high performance. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:496 / 504
页数:9
相关论文
共 50 条
  • [1] Non-parametric approach to ICA using kernel density estimation
    Sengupta, K
    Burman, P
    [J]. 2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I, PROCEEDINGS, 2003, : 749 - 752
  • [2] A Non-parametric Density Kernel in Density Peak Based Clustering
    Hou, Jian
    Zhang, Aihua
    [J]. 2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 4362 - 4367
  • [3] A non-parametric semi-supervised discretization method
    Bondu, Alexis
    Boulle, Marc
    Lemaire, Vincent
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2010, 24 (01) : 35 - 57
  • [4] A Non-parametric Semi-supervised Discretization Method
    Bondu, A.
    Boulle, M.
    Lemaire, V
    Loiseau, S.
    Duval, B.
    [J]. ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 53 - +
  • [5] A non-parametric semi-supervised discretization method
    Alexis Bondu
    Marc Boullé
    Vincent Lemaire
    [J]. Knowledge and Information Systems, 2010, 24 : 35 - 57
  • [6] A Non-Parametric Method to Determine Basic Probability Assignment Based on Kernel Density Estimation
    Qin, Bowen
    Xiao, Fuyuan
    [J]. IEEE ACCESS, 2018, 6 : 73509 - 73519
  • [7] Wind Power Prediction Based on Kalman Filter and Non-parametric Kernel Density Estimation
    Li, Daoqing
    Hussain, Adil
    Yu, Xiaodong
    Liu, Shulin
    Yu, Xuanzhou
    Zhang, Kai
    [J]. 2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 1319 - 1324
  • [8] Non-Parametric Kernel Density Estimation for the Prediction of Neoadjuvant Chemotherapy Outcomes
    Wanderley, Maria Fernanda B.
    Braga, Antonio P.
    Mendes, Eduardo M. A. M.
    Natowicz, Rene
    Rouzier, Roman
    [J]. 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 1775 - 1778
  • [9] Non-parametric kernel estimation of the coefficient of a diffusion
    Jacod, J
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2000, 27 (01) : 83 - 96
  • [10] Prediction error analysis of wind power based on clustering and non-parametric kernel density estimation
    Zhang, Xiaoying
    Zhang, Xiaomin
    Liao, Shun
    Chen, Wei
    Wang, Xiaolan
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2019, 40 (12): : 3594 - 3604