Low Default Credit Scoring using Two-class Non-parametric Kernel Density Estimation

被引:0
|
作者
Rademeyer, Estian [1 ]
van der Walt, Christiaan M. [2 ]
de Waal, Alta [1 ]
机构
[1] Univ Pretoria, Dept Stat, Pretoria, South Africa
[2] CSIR, Modelling & Digital Sci, Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the performance of two-class classification credit scoring data sets with low default ratios. The standard two-class parametric Gaussian and non-parametric Parzen classifiers are extended, using Bayes' rule, to include either a class imbalance or a Bernoulli prior. This is done with the aim of addressing the low default probability problem. Furthermore, the performance of Parzen classification with Silverman and Minimum Leave-one-out Entropy (MLE) Gaussian kernel bandwidth estimation is also investigated.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Wind Power Prediction Errors Model and Algorithm Based on Non-parametric Kernel Density Estimation
    Liao, Guodong
    Ming, Jie
    Wei, Boyuan
    Xiang, Hongji
    Jiang, Nan
    Ai, Peng
    Dai, Chaohua
    Xie, Xintao
    Li, Mengjiao
    [J]. 2015 5TH INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION AND RESTRUCTURING AND POWER TECHNOLOGIES (DRPT 2015), 2015, : 1864 - 1868
  • [32] Non-parametric kernel estimation for the ANOVA decomposition and sensitivity analysis
    Luo, Xiaopeng
    Lu, Zhenzhou
    Xu, Xin
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2014, 130 : 140 - 148
  • [33] Non-parametric Density Estimation Based on Label Semantics
    Lawry, Jonathan
    Gonzalez-Rodriguez, Ines
    [J]. SOFT METHODS FOR HANDLING VARIABILITY AND IMPRECISION, 2008, 48 : 183 - +
  • [34] Non-parametric confidence bands in deconvolution density estimation
    Bissantz, Nicolai
    Dumbgen, Lutz
    Holzmann, Hajo
    Munk, Axel
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 483 - 506
  • [35] Non-parametric estimation of directional wave spectra using two hyperparameters
    Hinostroza, M. A.
    Guedes Soares, C.
    [J]. MARITIME TECHNOLOGY AND ENGINEERING 3, VOLS 1-2, 2016, : 287 - 293
  • [36] Data assimilation by non-parametric local density estimation
    Torfs, P
    van Loon, E
    Wójcik, R
    Troch, P
    [J]. COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2, PROCEEDINGS, 2002, 47 : 1355 - 1362
  • [37] PARAMETRIC AND NON-PARAMETRIC DENSITY-ESTIMATION TO ACCOUNT FOR EXTREME EVENTS
    YAKOWITZ, S
    [J]. ADVANCES IN APPLIED PROBABILITY, 1988, 20 (01) : 13 - 13
  • [38] KNN non-parametric kernel density estimation method for motion foreground detection based on Gaussian filtering
    Yang, Xiaoqiang
    Feng, Tianju
    [J]. 2019 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC 2019), VOL 2, 2019, : 93 - 96
  • [39] Optimization configuration of photovoltaic-storage system capacity based on non-parametric kernel density estimation
    Jiang, Xiaoliang
    Li, Wei
    Lü, Xiangyu
    Gao, Yubo
    Han, Xiaojuan
    Ji, Tianming
    [J]. Gaodianya Jishu/High Voltage Engineering, 2015, 41 (07): : 2225 - 2230
  • [40] Non-parametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals
    Wang, Ying
    Wu, Fengchang
    Giesy, John P.
    Feng, Chenglian
    Liu, Yuedan
    Qin, Ning
    Zhao, Yujie
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (18) : 13980 - 13989