Non-parametric kernel estimation for the ANOVA decomposition and sensitivity analysis

被引:13
|
作者
Luo, Xiaopeng [1 ]
Lu, Zhenzhou [1 ]
Xu, Xin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
ANOVA decomposition; Sensitivity analysis (SA); Non-parametric methods; Kernel estimate; Higher-order kernels; Conditional moments; RATES; CONVERGENCE;
D O I
10.1016/j.ress.2014.06.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider the non-parametric estimation of the analysis of variance (ANOVA) decomposition, which is useful for applications in sensitivity analysis (SA) and in the more general emulation framework. Pursuing the point of view of the state-dependent parameter (SDP) estimation, the non-parametric kernel estimation (including high order kernel estimator) is built for those purposes. On the basis of the kernel technique, the asymptotic convergence rate is theoretically obtained for the estimator of sensitivity indices. It is shown that the kernel estimation can provide a faster convergence rate than the SDP estimation for both the ANOVA decomposition and the sensitivity indices. This would help one to get a more accurate estimation at a smaller computational cost (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:140 / 148
页数:9
相关论文
共 50 条
  • [1] Discrete non-parametric kernel estimation for global sensitivity analysis
    Kiesse, Tristan Senga
    Ventura, Anne
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2016, 146 : 47 - 54
  • [2] A multivariate non-parametric kernel estimator for global sensitivity analysis
    Djerroud, Lamia
    Kiesse, Tristan Senga
    Adjabi, Smail
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (06) : 1606 - 1622
  • [3] Non-parametric estimation of conditional moments for sensitivity analysis
    Ratto, M.
    Pagano, A.
    Young, P. C.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2009, 94 (02) : 237 - 243
  • [4] Non-parametric kernel estimation of the coefficient of a diffusion
    Jacod, J
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2000, 27 (01) : 83 - 96
  • [5] On non-parametric estimation of the Levy kernel of Markov processes
    Uetzhoefer, Florian A. J.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (10) : 3663 - 3709
  • [6] A non-parametric approach for independent component analysis using kernel density estimation
    Sengupta, K
    Burman, P
    Sharma, R
    [J]. PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, 2004, : 667 - 672
  • [7] A non-parametric approach for independent component analysis using kernel density estimation
    Sengupta, Kuntal
    Burman, Prabir
    Sharma, Rajeev
    [J]. Proc IEEE Comput Soc Conf Comput Vision Pattern Recognit, 1600, (II667-II672):
  • [8] Non-parametric approach to ICA using kernel density estimation
    Sengupta, K
    Burman, P
    [J]. 2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I, PROCEEDINGS, 2003, : 749 - 752
  • [9] Supervised non-parametric discretization based on Kernel density estimation
    Luis Flores, Jose
    Calvo, Borja
    Perez, Aritz
    [J]. PATTERN RECOGNITION LETTERS, 2019, 128 : 496 - 504
  • [10] Learning non-parametric kernel via matrix decomposition for logistic regression
    Wang, Kaijie
    He, Fan
    He, Mingzhen
    Huang, Xiaolin
    [J]. PATTERN RECOGNITION LETTERS, 2023, 171 : 177 - 183