Low Default Credit Scoring using Two-class Non-parametric Kernel Density Estimation

被引:0
|
作者
Rademeyer, Estian [1 ]
van der Walt, Christiaan M. [2 ]
de Waal, Alta [1 ]
机构
[1] Univ Pretoria, Dept Stat, Pretoria, South Africa
[2] CSIR, Modelling & Digital Sci, Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the performance of two-class classification credit scoring data sets with low default ratios. The standard two-class parametric Gaussian and non-parametric Parzen classifiers are extended, using Bayes' rule, to include either a class imbalance or a Bernoulli prior. This is done with the aim of addressing the low default probability problem. Furthermore, the performance of Parzen classification with Silverman and Minimum Leave-one-out Entropy (MLE) Gaussian kernel bandwidth estimation is also investigated.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Non-parametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals
    Wang, Ying
    Wu, Fengchang
    Giesy, John P.
    Feng, Chenglian
    Liu, Yuedan
    Qin, Ning
    Zhao, Yujie
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (18) : 13980 - 13989
  • [42] An Artificial Neural Network Classifier Design Based-on Variable Kernel and Non-Parametric Density Estimation
    Chee Siong Teh
    Chee Peng Lim
    [J]. Neural Processing Letters, 2008, 27 : 137 - 151
  • [43] NON-PARAMETRIC ONLINE CHANGE-POINT DETECTION WITH KERNEL LMS BY RELATIVE DENSITY RATIO ESTIMATION
    Bouchikhi, Ikram
    Ferrari, Andre
    Richard, Cedric
    Bourrier, Anthony
    Bernot, Marc
    [J]. 2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 538 - 542
  • [44] Non-parametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals
    Ying Wang
    Fengchang Wu
    John P. Giesy
    Chenglian Feng
    Yuedan Liu
    Ning Qin
    Yujie Zhao
    [J]. Environmental Science and Pollution Research, 2015, 22 : 13980 - 13989
  • [45] An artificial neural network classifier design based-on variable kernel and non-parametric density estimation
    Teh, Chee Siong
    Lim, Chee Peng
    [J]. NEURAL PROCESSING LETTERS, 2008, 27 (02) : 137 - 151
  • [46] Spatial Load Distribution Law Based on Geographic Feature Extraction and Non-parametric Kernel Density Estimation
    Yang, Xiaofeng
    Tong, Cunzhi
    Zhu, Feng
    Huang, Yuan
    Lu, Xianchuan
    Xie, Dong
    Liu, Zhesi
    Ying, Xinyi
    Wang, Bing
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6024 - 6029
  • [47] Non-parametric Bayesian updating and windowing with kernel density and the kudzu algorithm
    Grant, Robert L.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL ECONOMICS AND ECONOMETRICS, 2022, 12 (04) : 405 - 428
  • [48] Index tracking model, downside risk and non-parametric kernel estimation
    Huang, Jinbo
    Li, Yong
    Yao, Haixiang
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2018, 92 : 103 - 128
  • [49] Non-parametric kernel-based estimation and simulation of precipitation amount
    Pavlides, Andrew
    Agou, Vasiliki D.
    Hristopulos, Dionissios T.
    [J]. JOURNAL OF HYDROLOGY, 2022, 612
  • [50] Localized Image Blur Removal through Non-Parametric Kernel Estimation
    Schelten, Kevin
    Roth, Stefan
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 702 - 707