BiLuNetICP: A Deep Neural Network for Object Semantic Segmentation and 6D Pose Recognition

被引:12
|
作者
Tran, Luan Van [1 ]
Lin, Huei-Yung [1 ,2 ]
机构
[1] Natl Chung Cheng Univ, Dept Elect Engn, Chiayi 621301, Taiwan
[2] Natl Chung Cheng Univ, Adv Inst Mfg High Tech Innovat, Chiayi 621301, Taiwan
关键词
Three-dimensional displays; Cameras; Pose estimation; Robots; Semantics; Solid modeling; Image segmentation; Semantic segmentation; 6D pose recognition; deep neural network; RGB-D images;
D O I
10.1109/JSEN.2020.3035632
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ability of understanding a scene and predicting the pose of objects has attracted significant interests in recent years. Specifically, it is used with visual sensors to provide the information for a robotic manipulator to interact with the target. Thus, 6D pose estimation and object recognition from point clouds or RGB-D images are important tasks for visual servoing. In this article, we propose a learning based approach to perform 6D pose estimation for robotic manipulation using a BiLuNetICP pipeline. It consists of a multi-path convolutional neural network (CNN) for semantic segmentation on RGB images. The network extracts the object mask and uses it to merge with the depth information to perform 6D pose estimation by the Iterative Closest Point (ICP) algorithm. We collected our own dataset for training and evaluate with Intersection over Union (IoU). The proposed method is able to provide better results compared with Unet++ using a small amount of training data. For the robotic grasping application, we test and evaluate our approach using a HIWIN 6-axis robot with Asus Xtion Live 3D camera and our structured-light depth camera. The experimental results demonstrate its efficiency in computation and the high success rate in grasping.
引用
收藏
页码:11748 / 11757
页数:10
相关论文
共 50 条
  • [21] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [22] SD-Pose: Semantic Decomposition for Cross-Domain 6D Object Pose Estimation
    Li, Zhigang
    Hu, Yinlin
    Salzmann, Mathieu
    Ji, Xiangyang
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2020 - 2028
  • [23] An efficient network for category-level 6D object pose estimation
    Shantong Sun
    Rongke Liu
    Shuqiao Sun
    Xinxin Yang
    Guangshan Lu
    [J]. Signal, Image and Video Processing, 2021, 15 : 1643 - 1651
  • [24] An efficient network for category-level 6D object pose estimation
    Sun, Shantong
    Liu, Rongke
    Sun, Shuqiao
    Yang, Xinxin
    Lu, Guangshan
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (07) : 1643 - 1651
  • [25] 6D Object Pose Tracking with Optical Flow Network for Robotic Manipulation
    Chen, Tao
    Gu, Dongbing
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 8048 - 8053
  • [26] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [27] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [28] DPOD: 6D Pose Object Detector and Refiner
    Zakharov, Sergey
    Shugurov, Ivan
    Ilic, Slobodan
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1941 - 1950
  • [29] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [30] RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering
    Iwase, Shun
    Liu, Xingyu
    Khirodkar, Rawal
    Yokota, Rio
    Kitani, Kris M.
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3283 - 3292