A General Solution of the Wright-Fisher Model of Random Genetic Drift

被引:4
|
作者
Tat Dat Tran [1 ]
Hofrichter, Julian [1 ]
Jost, Juergen [1 ,2 ,3 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Univ Leipzig, Dept Math, D-04081 Leipzig, Germany
[3] Santa Fe Inst Sci Complex, Santa Fe, NM 87501 USA
基金
芬兰科学院; 欧洲研究理事会;
关键词
Random genetic drift; Fokker-Planck equation; Wright-Fisher model; Several alleles; DIFFUSION APPROXIMATIONS;
D O I
10.1007/s12591-016-0289-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a general solution concept for the Fokker-Planck (Kolmogorov) equation representing the diffusion limit of the Wright-Fisher model of random genetic drift for an arbitrary number of alleles at a single locus. This solution will continue beyond the transitions from the loss of alleles, that is, it will naturally extend to the boundary strata of the probability simplex on which the diffusion is defined. This also takes care of the degeneracy of the diffusion operator at the boundary. We shall then show the existence and uniqueness of a solution. From this solution, we can readily deduce information about the evolution of a Wright-Fisher population.
引用
收藏
页码:467 / 492
页数:26
相关论文
共 50 条
  • [21] INTERTWINING OF THE WRIGHT-FISHER DIFFUSION
    Hudec, Tobias
    KYBERNETIKA, 2017, 53 (04) : 730 - 746
  • [22] A HIERARCHICAL EXTENSION SCHEME FOR SOLUTIONS OF THE WRIGHT-FISHER MODEL
    Hofrichter, Julian
    Tat Dat Tran
    Jost, Juergen
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (04) : 1093 - 1110
  • [23] Genealogy of a Wright-Fisher Model with Strong SeedBank Component
    Blath, Jochen
    Eldon, Bjarki
    Casanova, Adrian Gonzalez
    Kurt, Noemi
    XI SYMPOSIUM ON PROBABILITY AND STOCHASTIC PROCESSES, 2015, 69 : 81 - 100
  • [24] FILTERING THE WRIGHT-FISHER DIFFUSION
    Chaleyat-Maurel, Mireille
    Genon-Catalot, Valentine
    ESAIM-PROBABILITY AND STATISTICS, 2009, 13 : 197 - 217
  • [25] On the Relation Between the Eigen Model and the Asexual Wright-Fisher Model
    Musso, Fabio
    BULLETIN OF MATHEMATICAL BIOLOGY, 2012, 74 (01) : 103 - 115
  • [26] A boundary preserving numerical scheme for the Wright-Fisher model
    Stamatiou, I. S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 328 : 132 - 150
  • [27] THE MAXIMUM NON-UNIT EIGENVALUE FOR THE WRIGHT FISHER MODEL OF RANDOM GENETIC DRIFT INCORPORATING SELECTION
    COX, TF
    COX, MAA
    THEORETICAL POPULATION BIOLOGY, 1984, 25 (01) : 29 - 40
  • [28] EXACT SIMULATION OF THE WRIGHT-FISHER DIFFUSION
    Jenkins, Paul A.
    Spano, Dario
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (03): : 1478 - 1509
  • [29] WRIGHT-FISHER DIFFUSION IN ONE DIMENSION
    Epstein, Charles L.
    Mazzeo, Rafe
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (02) : 568 - 608
  • [30] Weak Approximations of the Wright-Fisher Process
    Mackevicius, Vigirdas
    Mongirdaite, Gabriele
    MATHEMATICS, 2022, 10 (01)