Weak Approximations of the Wright-Fisher Process

被引:1
|
作者
Mackevicius, Vigirdas [1 ]
Mongirdaite, Gabriele [1 ]
机构
[1] Vilnius Univ, Inst Math, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
关键词
weak approximations; split-step; Wright-Fisher equation; Jacobi equation; TERM STRUCTURE;
D O I
10.3390/math10010125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct first- and second-order weak split-step approximations for the solutions of the Wright-Fisher equation. The discretization schemes use the generation of, respectively, two- and three-valued random variables at each discretization step. The accuracy of constructed approximations is illustrated by several simulation examples.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On the two oldest families for the Wright-Fisher process
    Delmas, Jean-Francois
    Dhersin, Jean-Stephane
    Siri-Jegousse, Arno
    ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 776 - 800
  • [2] Evolutionary game dynamics in a Wright-Fisher process
    Imhof, LA
    Nowak, MA
    JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 52 (05) : 667 - 681
  • [3] DIFFUSION APPROXIMATIONS OF THE 2-LOCUS WRIGHT-FISHER MODEL
    ETHIER, SN
    NAGYLAKI, T
    JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (01) : 17 - 28
  • [4] The common ancestor process for a Wright-Fisher diffusion
    Taylor, Jesse E.
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 : 808 - 847
  • [5] A dual process for the coupled Wright-Fisher diffusion
    Favero, Martina
    Hult, Henrik
    Koski, Timo
    JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 82 (1-2)
  • [6] Evolutionary game dynamics in a Wright-Fisher process
    Lorens A. Imhof
    Martin A. Nowak
    Journal of Mathematical Biology, 2006, 52 : 667 - 681
  • [7] MORAN PROCESS AND WRIGHT-FISHER PROCESS FAVOR LOW VARIABILITY
    Rychtar, Jan
    Taylor, Dewey T.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (07): : 3491 - 3504
  • [8] The Rescaled Polya Urn and the Wright-Fisher Process with Mutation
    Aletti, Giacomo
    Crimaldi, Irene
    MATHEMATICS, 2021, 9 (22)
  • [9] Wright-Fisher diffusion bridges
    Griffiths, Robert C.
    Jenkins, Paul A.
    Spano, Dario
    THEORETICAL POPULATION BIOLOGY, 2018, 122 : 67 - 77
  • [10] Drift beyond Wright-Fisher
    Clatterbuck, Hayley
    SYNTHESE, 2015, 192 (11) : 3487 - 3507