A General Solution of the Wright-Fisher Model of Random Genetic Drift

被引:4
|
作者
Tat Dat Tran [1 ]
Hofrichter, Julian [1 ]
Jost, Juergen [1 ,2 ,3 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Univ Leipzig, Dept Math, D-04081 Leipzig, Germany
[3] Santa Fe Inst Sci Complex, Santa Fe, NM 87501 USA
基金
芬兰科学院; 欧洲研究理事会;
关键词
Random genetic drift; Fokker-Planck equation; Wright-Fisher model; Several alleles; DIFFUSION APPROXIMATIONS;
D O I
10.1007/s12591-016-0289-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a general solution concept for the Fokker-Planck (Kolmogorov) equation representing the diffusion limit of the Wright-Fisher model of random genetic drift for an arbitrary number of alleles at a single locus. This solution will continue beyond the transitions from the loss of alleles, that is, it will naturally extend to the boundary strata of the probability simplex on which the diffusion is defined. This also takes care of the degeneracy of the diffusion operator at the boundary. We shall then show the existence and uniqueness of a solution. From this solution, we can readily deduce information about the evolution of a Wright-Fisher population.
引用
收藏
页码:467 / 492
页数:26
相关论文
共 50 条
  • [41] The Structure of Idealization in Biological Theories: The Case of the Wright-Fisher Model
    Xavier de Donato Rodríguez
    Alfonso Arroyo Santos
    Journal for General Philosophy of Science, 2012, 43 : 11 - 27
  • [42] DIFFUSION APPROXIMATIONS OF THE 2-LOCUS WRIGHT-FISHER MODEL
    ETHIER, SN
    NAGYLAKI, T
    JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (01) : 17 - 28
  • [43] The Variance of Identity-by-Descent Sharing in the Wright-Fisher Model
    Carmi, Shai
    Palamara, Pier Francesco
    Vacic, Vladimir
    Lencz, Todd
    Darvasi, Ariel
    Pe'er, Itsik
    GENETICS, 2013, 193 (03) : 911 - 928
  • [44] Wright-Fisher dynamics on adaptive landscape
    Jiao, Shuyun
    Xu, Song
    Jiang, Pengyao
    Yuan, Bo
    Ao, Ping
    IET SYSTEMS BIOLOGY, 2013, 7 (05) : 153 - 164
  • [45] Alternatives to the Wright-Fisher model: The robustness of mitochondrial Eve dating
    Cyran, Krzysztof A.
    Kimmel, Marek
    THEORETICAL POPULATION BIOLOGY, 2010, 78 (03) : 165 - 172
  • [46] The Structure of Idealization in Biological Theories: The Case of the Wright-Fisher Model
    de Donato Rodriguez, Xavier
    Arroyo Santos, Alfonso
    JOURNAL FOR GENERAL PHILOSOPHY OF SCIENCE, 2012, 43 (01) : 11 - 27
  • [47] A boundary preserving numerical algorithm for the Wright-Fisher model with mutation
    Dangerfield, C. E.
    Kay, D.
    MacNamara, S.
    Burrage, K.
    BIT NUMERICAL MATHEMATICS, 2012, 52 (02) : 283 - 304
  • [48] The uniqueness of hierarchically extended backward solutions of the Wright-Fisher model
    Hofrichter, Julian
    Tran, Tat Dat
    Jost, Juergen
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (03) : 447 - 483
  • [49] EQUILIBRIUM IN WRIGHT-FISHER MODELS OF POPULATION GENETICS
    Koroliouk, D.
    Koroliuk, V. S.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2019, 55 (02) : 253 - 258