Jensen type inequality for the bipolar pseudo-integrals
被引:7
|
作者:
Todorov, Milos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Novi Sad, Fac Tech Sci, Trg Dositeja Obradovica 6, Novi Sad 21000, SerbiaUniv Novi Sad, Fac Tech Sci, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
Todorov, Milos
[1
]
Strboja, Mirjana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg Dositeja Obradovica 6, Novi Sad 21000, SerbiaUniv Novi Sad, Fac Tech Sci, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
Strboja, Mirjana
[2
]
论文数: 引用数:
h-index:
机构:
Pap, Endre
[3
]
Mihailovic, Biljana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Novi Sad, Fac Tech Sci, Trg Dositeja Obradovica 6, Novi Sad 21000, SerbiaUniv Novi Sad, Fac Tech Sci, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
Mihailovic, Biljana
[1
]
机构:
[1] Univ Novi Sad, Fac Tech Sci, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
[2] Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
[3] Singidunum Univ, Danijelova 29, Belgrade 11000, Serbia
The main purpose of this paper is to establish conditions under which the Jensen type inequality for the discrete bipolar pseudo-integral is valid. Besides, we extend investigations of the properties of the bipolar pseudo-integral. The observations concern the discrete bipolar pseudo-integrals based on the following three canonical cases of two binary symmetric operations: in the first case they are generated by an odd, strictly increasing and continuous function, in the remaining two cases a symmetric-addition is the symmetric maximum, while in the second case the corresponding pseudo-multiplication is a non-idempotent operation, and in the third case it is the symmetric minimum. (C) 2019 Elsevier B.V. All rights reserved.