Jensen type inequality for the bipolar pseudo-integrals

被引:7
|
作者
Todorov, Milos [1 ]
Strboja, Mirjana [2 ]
Pap, Endre [3 ]
Mihailovic, Biljana [1 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
[2] Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
[3] Singidunum Univ, Danijelova 29, Belgrade 11000, Serbia
关键词
Bi-capacity; Symmetric pseudo-addition; Symmetric pseudo-multiplication; Bipolar pseudo-integral; Jensen-Steffensen's inequality; BI-CAPACITIES; CHOQUET;
D O I
10.1016/j.fss.2019.04.015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main purpose of this paper is to establish conditions under which the Jensen type inequality for the discrete bipolar pseudo-integral is valid. Besides, we extend investigations of the properties of the bipolar pseudo-integral. The observations concern the discrete bipolar pseudo-integrals based on the following three canonical cases of two binary symmetric operations: in the first case they are generated by an odd, strictly increasing and continuous function, in the remaining two cases a symmetric-addition is the symmetric maximum, while in the second case the corresponding pseudo-multiplication is a non-idempotent operation, and in the third case it is the symmetric minimum. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 101
页数:20
相关论文
共 50 条