Jensen type inequality for the bipolar pseudo-integrals

被引:7
|
作者
Todorov, Milos [1 ]
Strboja, Mirjana [2 ]
Pap, Endre [3 ]
Mihailovic, Biljana [1 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
[2] Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
[3] Singidunum Univ, Danijelova 29, Belgrade 11000, Serbia
关键词
Bi-capacity; Symmetric pseudo-addition; Symmetric pseudo-multiplication; Bipolar pseudo-integral; Jensen-Steffensen's inequality; BI-CAPACITIES; CHOQUET;
D O I
10.1016/j.fss.2019.04.015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main purpose of this paper is to establish conditions under which the Jensen type inequality for the discrete bipolar pseudo-integral is valid. Besides, we extend investigations of the properties of the bipolar pseudo-integral. The observations concern the discrete bipolar pseudo-integrals based on the following three canonical cases of two binary symmetric operations: in the first case they are generated by an odd, strictly increasing and continuous function, in the remaining two cases a symmetric-addition is the symmetric maximum, while in the second case the corresponding pseudo-multiplication is a non-idempotent operation, and in the third case it is the symmetric minimum. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 101
页数:20
相关论文
共 50 条
  • [21] On Jensen-Type and Holder-Type, Inequality for Interval-Valued Choquet Integrals
    Jang, Lee-Chae
    Lee, Jeong Gon
    Kim, Hyun-Mee
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2018, 18 (02) : 97 - 102
  • [22] Jensen type inequality for the pseudo-integral based on the smallest universal integral
    Pap, Endre
    Strboja, Mirjana
    2014 IEEE 12TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS (SISY), 2014, : 143 - 147
  • [23] Generalization of the Jensen inequality for pseudo-integral
    Pap, Endre
    Strboja, Mirjana
    INFORMATION SCIENCES, 2010, 180 (04) : 543 - 548
  • [24] Holder Type Inequality and Jensen Type Inequality for Choquet Integral
    Zhao, Xuan
    Zhang, Qiang
    KNOWLEDGE ENGINEERING AND MANAGEMENT, 2011, 123 : 219 - 224
  • [25] Generalization of the Jensen's inequality for pseudo-integral
    Pap, Endre
    Strboja, Mirjana
    2008 6TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS, 2008, : 173 - 175
  • [26] On the Jensen type inequality for generalized Sugeno integral
    Kaluszka, Marek
    Okolewski, Andrzej
    Boczek, Michal
    INFORMATION SCIENCES, 2014, 266 : 140 - 147
  • [27] JENSEN TYPE INEQUALITIES AND THEIR APPLICATIONS VIA FRACTIONAL INTEGRALS
    Abbaszadeh, Sadegh
    Ebadian, Ali
    Jaddi, Mohsen
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (08) : 2459 - 2488
  • [28] GENERAL RELATED JENSEN TYPE INEQUALITIES FOR FUZZY INTEGRALS
    Daraby, B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2018, 8 (01): : 1 - 7
  • [29] A Poincaré type inequality for Hessian integrals
    Neil S. Trudinger
    Xu-Jia Wang
    Calculus of Variations and Partial Differential Equations, 1998, 6 : 315 - 328