Jensen type inequality for the bipolar pseudo-integrals

被引:7
|
作者
Todorov, Milos [1 ]
Strboja, Mirjana [2 ]
Pap, Endre [3 ]
Mihailovic, Biljana [1 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
[2] Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
[3] Singidunum Univ, Danijelova 29, Belgrade 11000, Serbia
关键词
Bi-capacity; Symmetric pseudo-addition; Symmetric pseudo-multiplication; Bipolar pseudo-integral; Jensen-Steffensen's inequality; BI-CAPACITIES; CHOQUET;
D O I
10.1016/j.fss.2019.04.015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main purpose of this paper is to establish conditions under which the Jensen type inequality for the discrete bipolar pseudo-integral is valid. Besides, we extend investigations of the properties of the bipolar pseudo-integral. The observations concern the discrete bipolar pseudo-integrals based on the following three canonical cases of two binary symmetric operations: in the first case they are generated by an odd, strictly increasing and continuous function, in the remaining two cases a symmetric-addition is the symmetric maximum, while in the second case the corresponding pseudo-multiplication is a non-idempotent operation, and in the third case it is the symmetric minimum. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 101
页数:20
相关论文
共 50 条
  • [41] ON THE OSTROWSKI TYPE INTEGRAL INEQUALITY FOR DOUBLE INTEGRALS
    Sarikaya, Mehmet
    DEMONSTRATIO MATHEMATICA, 2012, 45 (03) : 533 - 540
  • [42] NEW OSTROWSKI TYPE INEQUALITY FOR TRIPLE INTEGRALS
    Pachpatte, B. G.
    TAMKANG JOURNAL OF MATHEMATICS, 2007, 38 (03): : 253 - 259
  • [43] A Hardy-type inequality for Sugeno Integrals
    Xiao, Li
    Yue, Hu
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 23 - 26
  • [44] An inequality related to Minkowski type for Sugeno integrals
    Ouyang, Yao
    Mesiar, Radko
    Agahi, Hamzeh
    INFORMATION SCIENCES, 2010, 180 (14) : 2793 - 2801
  • [45] Improved Hermite-Hadamard Inequality Bounds for Riemann-Liouville Fractional Integrals via Jensen's Inequality
    Ali, Muhammad Aamir
    Liu, Wei
    Furuichi, Shigeru
    Feckan, Michal
    FRACTAL AND FRACTIONAL, 2024, 8 (09)
  • [46] Hermite–Jensen–Mercer type inequalities for conformable integrals and related results
    Saad Ihsan Butt
    Mehroz Nadeem
    Shahid Qaisar
    Ahmet Ocak Akdemir
    Thabet Abdeljawad
    Advances in Difference Equations, 2020
  • [47] A Simple Proof of the Jensen-Type Inequality of Fink and Jodeit
    Mihai, Marcela V.
    Niculescu, Constantin P.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) : 119 - 126
  • [48] A Simple Proof of the Jensen-Type Inequality of Fink and Jodeit
    Marcela V. Mihai
    Constantin P. Niculescu
    Mediterranean Journal of Mathematics, 2016, 13 : 119 - 126
  • [49] ON A JENSEN-TYPE INEQUALITY FOR F-CONVEX FUNCTIONS
    Adamek, Miroslaw
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1355 - 1364
  • [50] AN INEQUALITY FOR JENSEN MEANS
    FIORENZA, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (02) : 191 - 198