MERCER TYPE VARIANTS OF THE JENSEN-STEFFENSEN INEQUALITY

被引:2
|
作者
Khan, Asif R. [1 ]
Rubab, Faiza [1 ]
机构
[1] Univ Karachi, Dept Math, Karachi 75270, Pakistan
关键词
monotonic function; composite function; reversed Jensen-Steffensen inequality;
D O I
10.1216/rmj.2022.52.1693
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An integral Jensen-Mercer inequality for weights satisfying conditions for the reversed Jensen-Steffensen inequality is proved here. Several integral inequalities involving more than one monotonic functions with reversed Jensen-Steffensen conditions are proved as well. Furthermore, a couple of general companion inequalities related to the integral Jensen-Mercer inequality with reversed Jensen-Steffensen conditions are presented. Applications for the generalization of weighted Ky Fan's inequality, classical power mean and classical arithmetic, geometric and harmonic mean inequalities involving bounded variation are also given.
引用
收藏
页码:1693 / 1712
页数:20
相关论文
共 50 条
  • [1] The Jensen-Steffensen inequality
    Bullen, PS
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1998, 1 (03): : 391 - 401
  • [2] Converse Jensen-Steffensen inequality
    Ivelic, S.
    Bakula, M. Klaricic
    Pecaric, J.
    AEQUATIONES MATHEMATICAE, 2011, 82 (03) : 233 - 246
  • [3] A COMPANION TO JENSEN-STEFFENSEN INEQUALITY
    PECARIC, JE
    JOURNAL OF APPROXIMATION THEORY, 1985, 44 (03) : 289 - 291
  • [4] On the refinements of the Jensen-Steffensen inequality
    Franjic, Iva
    Khalid, Sadia
    Pecaric, Josip
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [5] On the refinements of the Jensen-Steffensen inequality
    Iva Franjić
    Sadia Khalid
    Josip Pečarić
    Journal of Inequalities and Applications, 2011
  • [6] On the refinements of the integral Jensen-Steffensen inequality
    Khalid, Sadia
    Pecaric, Josip
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [7] ON SOME CONVERSIONS OF THE JENSEN-STEFFENSEN INEQUALITY
    Ivelic, S.
    Pecaric, J.
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2013, 17 (515): : 107 - 121
  • [8] CAUCHY TYPE MEANS RELATED TO THE CONVERSE JENSEN-STEFFENSEN INEQUALITY
    Ivelic, S.
    Bakula, M. Klaricic
    Pecaric, J.
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2013, 17 (515): : 123 - 137
  • [9] About the precision in Jensen-Steffensen inequality
    Mitroi, Flavia-Corina
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (04): : 73 - 84
  • [10] A SIMPLE PROOF OF THE JENSEN-STEFFENSEN INEQUALITY
    PECARIC, JE
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (03): : 195 - 196