Jensen type inequality for the bipolar pseudo-integrals

被引:7
|
作者
Todorov, Milos [1 ]
Strboja, Mirjana [2 ]
Pap, Endre [3 ]
Mihailovic, Biljana [1 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
[2] Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
[3] Singidunum Univ, Danijelova 29, Belgrade 11000, Serbia
关键词
Bi-capacity; Symmetric pseudo-addition; Symmetric pseudo-multiplication; Bipolar pseudo-integral; Jensen-Steffensen's inequality; BI-CAPACITIES; CHOQUET;
D O I
10.1016/j.fss.2019.04.015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main purpose of this paper is to establish conditions under which the Jensen type inequality for the discrete bipolar pseudo-integral is valid. Besides, we extend investigations of the properties of the bipolar pseudo-integral. The observations concern the discrete bipolar pseudo-integrals based on the following three canonical cases of two binary symmetric operations: in the first case they are generated by an odd, strictly increasing and continuous function, in the remaining two cases a symmetric-addition is the symmetric maximum, while in the second case the corresponding pseudo-multiplication is a non-idempotent operation, and in the third case it is the symmetric minimum. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 101
页数:20
相关论文
共 50 条
  • [1] Jensen's inequalities for pseudo-integrals
    Zhang, D.
    Pap, E.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2021, 18 (03): : 99 - 109
  • [2] Generalization of the Lyapunov type inequality for pseudo-integrals
    Li, Dong-Qing
    Song, Xiao-Qiu
    Yue, Tian
    Song, Ya-Zhi
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 241 : 64 - 69
  • [3] Generalization of the Stolarsky type inequality for pseudo-integrals
    Daraby, Bayaz
    FUZZY SETS AND SYSTEMS, 2012, 194 : 90 - 96
  • [4] Discrete bipolar pseudo-integrals
    Strboja, Mirjana
    Pap, Endre
    Mihailovic, Biljana
    INFORMATION SCIENCES, 2018, 468 : 72 - 88
  • [5] Sitaru-Schweitzer Type Inequality for Fuzzy and Pseudo-Integrals
    Daraby, Bayaz
    Tahmourasi, Mortaza
    Rahimi, Asghar
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (01): : 31 - 45
  • [6] Diaz-Metcalf type inequality for Sugeno and pseudo-integrals
    Karimzadeh, M. R.
    Daraby, B.
    Rahimi, A.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2023, 20 (03): : 31 - 41
  • [7] Generalizations of the steffensen integral inequality for pseudo-integrals
    Guo, Jing
    Zhou, Xianzhong
    MATHEMATICA SLOVACA, 2022, 72 (05) : 1163 - 1184
  • [8] Related Gauss-Winkler Type Inequality for Fuzzy and Pseudo-Integrals
    Daraby, Bayaz
    Rostampour, Fatemeh
    Khodadadi, Ali Reza
    Rahimi, Asghar
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (02): : 713 - 724
  • [9] Chebyshev type inequalities for pseudo-integrals
    Agahi, Hamzeh
    Mesiar, Radko
    Ouyang, Yao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) : 2737 - 2743
  • [10] Jensen Type Inequality for the Bipolar Shilkret, Sugeno and Choquet Integrals
    Mihailovic, Biljana
    Strbojab, Mirjana
    Todorovc, Milos
    ACTA POLYTECHNICA HUNGARICA, 2021, 18 (10) : 9 - +