Discrete bipolar pseudo-integrals

被引:7
|
作者
Strboja, Mirjana [1 ]
Pap, Endre [2 ]
Mihailovic, Biljana [3 ]
机构
[1] Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg Dositeja Obradovica 3, Novi Sad 21000, Serbia
[2] Singidunum Univ, Danijelova 29, Belgrade 11000, Serbia
[3] Univ Novi Sad, Fac Tech Sci, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
关键词
Bi-capacity; Symmetric pseudo-operations; Bipolar pseudo-integral; Fatou type lemma; CHOQUET INTEGRALS; BI-CAPACITIES; LIMIT;
D O I
10.1016/j.ins.2018.07.075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the authors paper (Strboja et al., 2016) On the notion of the bipolar pseudo-integral has been introduced. This paper extends investigations related to this new type of bipolar integrals defined with respect to circle plus-decomposable bi-capacities. We consider the main properties of the discrete bipolar pseudo-integral. A characterization theorem for the discrete bipolar pseudo-integral is proven. Monotone convergence theorems and the Fatou type lemma for the discrete bipolar pseudo-integral are considered. In order to illustrate obtained results, many interesting examples are provided. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:72 / 88
页数:17
相关论文
共 50 条
  • [1] Discrete pseudo-integrals
    Mesiar, Radko
    Li, Jun
    Pap, Endre
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (03) : 357 - 364
  • [2] Jensen type inequality for the bipolar pseudo-integrals
    Todorov, Milos
    Strboja, Mirjana
    Pap, Endre
    Mihailovic, Biljana
    FUZZY SETS AND SYSTEMS, 2020, 379 (379) : 82 - 101
  • [3] On stochastic pseudo-integrals with applications
    Agahi, Hamzeh
    Yadollahzadeh, Milad
    STATISTICS & PROBABILITY LETTERS, 2017, 124 : 41 - 48
  • [4] Jensen's inequalities for pseudo-integrals
    Zhang, D.
    Pap, E.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2021, 18 (03): : 99 - 109
  • [5] On properties of decomposable measures and pseudo-integrals
    Qiu, Dong
    Lu, Chongxia
    Yu, Nanxiang
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 20 (06) : 1043 - 1057
  • [6] Chebyshev type inequalities for pseudo-integrals
    Agahi, Hamzeh
    Mesiar, Radko
    Ouyang, Yao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) : 2737 - 2743
  • [7] Inequalities of the Chebyshev type based on pseudo-integrals
    Grbic, Tatjana
    Medic, Slavica
    Perovic, Aleksandar
    Paskota, Mira
    Buhmiler, Sandra
    FUZZY SETS AND SYSTEMS, 2016, 289 : 16 - 32
  • [8] Generalization of the Lyapunov type inequality for pseudo-integrals
    Li, Dong-Qing
    Song, Xiao-Qiu
    Yue, Tian
    Song, Ya-Zhi
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 241 : 64 - 69
  • [9] Generalization of the Stolarsky type inequality for pseudo-integrals
    Daraby, Bayaz
    FUZZY SETS AND SYSTEMS, 2012, 194 : 90 - 96
  • [10] Generalizations of the steffensen integral inequality for pseudo-integrals
    Guo, Jing
    Zhou, Xianzhong
    MATHEMATICA SLOVACA, 2022, 72 (05) : 1163 - 1184