High-performance non-volatile CdS nanobelt-based floating nanodot gate memory

被引:13
|
作者
Wu, P. C.
Dai, Y.
Ye, Y.
Fang, X. L.
Sun, T.
Liu, C.
Dai, L. [1 ]
机构
[1] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL; NANOCRYSTALS; OXIDE;
D O I
10.1039/c000541j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-performance, non-volatile, floating nanodot gate memories (FNGMs) based on single CdS nanobelts (NBs) are reported. Their structure consists of a CdS NB field-effect transistor and Au nanodots embedded in high-kappa HfO2 top-gate dielectrics. Direct tunnelling of charges between the CdS NB and the Au nanodots causes a shift of the threshold. A simple thermal evaporation method was employed to fabricate high-density, uniformly distributed Au nanodots (similar to 3 x 10(12) cm(-2)) in between a 5 nm HfO2 tunnelling layer and a 15 nm HfO2 control oxide layer. Under a low operation voltage of 5 V, a typical as-fabricated FNGM has a large memory window of 3.2 V, long retention time of up to 10(5) s, and good stress endurance of more than 10(4) write/erase cycles. The working principle of the CdS nanobelt-based FNGM is discussed in detail in this paper.
引用
收藏
页码:4404 / 4408
页数:5
相关论文
共 50 条
  • [1] Back-floating gate non-volatile memory
    Avci, U
    Kumar, A
    Tiwari, S
    [J]. 2004 IEEE INTERNATIONAL SOI CONFERENCE, PROCEEDINGS, 2004, : 133 - 135
  • [2] Selective floating gate non-volatile paper memory transistor
    Martins, Rodrigo
    Barquinha, P.
    Pereira, L.
    Correia, N.
    Goncalves, G.
    Ferreira, I.
    Fortunato, E.
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2009, 3 (09): : 308 - 310
  • [3] High-Performance Non-Volatile Organic Ferroelectric Memory on Banknotes
    Khan, M. A.
    Bhansali, Unnat S.
    Alshareef, H. N.
    [J]. ADVANCED MATERIALS, 2012, 24 (16) : 2165 - 2170
  • [4] Hybrid numerical analysis of a high-speed non-volatile suspended gate silicon nanodot memory (SGSNM)
    Garcia-Ramirez, Mario A.
    Tsuchiya, Yoshishige
    Mizuta, Hiroshi
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2011, 10 (1-2) : 248 - 257
  • [5] Hybrid numerical analysis of a high-speed non-volatile suspended gate silicon nanodot memory (SGSNM)
    Mario A. García-Ramírez
    Yoshishige Tsuchiya
    Hiroshi Mizuta
    [J]. Journal of Computational Electronics, 2011, 10 : 248 - 257
  • [6] Non-Volatile Memory Based Page Swapping for Building High-Performance Mobile Devices
    Liu, Duo
    Zhong, Kan
    Zhu, Xiao
    Li, Yang
    Long, Lingbo
    Shao, Zili
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2017, 66 (11) : 1918 - 1931
  • [7] Reconfigurable Non-volatile High-performance Metalens
    Shalaginov, Mikhail
    An, Sensong
    Zhang, Yifei
    Yang, Fan
    Su, Peter
    Liberman, Vladimir
    Chou, Jeffrey
    Roberts, Christopher
    Kang, Myungkoo
    Rios, Carlos
    Du, Qingyang
    Fowler, Clayton
    Agarwal, Anuradha
    Richardson, Kathleen
    Rivero-Baleine, Clara
    Zhang, Hualiang
    Hu, Juejun
    Gu, Tian
    [J]. 2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [8] High-performance FPGA Based on Novel DSS-MOSFET and Non-volatile Configuration Memory
    Yasuda, Shinichi
    Tanamoto, Tetsufumi
    Ikegami, Kazutaka
    Kinoshita, Atsuhiro
    Abe, Keiko
    Nishino, Hirotaka
    Fujita, Shinobu
    [J]. FPGA 10, 2010, : 291 - 292
  • [9] A high-performance buffer for non-volatile memories
    De Ambrogi, L
    Nicosia, S
    Pagano, G
    Palumbo, G
    [J]. ICES 2002: 9TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-111, CONFERENCE PROCEEDINGS, 2002, : 611 - 614
  • [10] High-performance non-volatile resistive switching memory based on a polyimide/graphene oxide nanocomposite
    Choi, Ju-Young
    Lee, Jeongjun
    Jeon, Jihyun
    Im, Jaehyuk
    Jang, Junhwan
    Jin, Seung-Won
    Joung, Hyeyoung
    Yu, Hwan-Chul
    Nam, Kyeong-Nam
    Park, Hyeong-Joo
    Kim, Dong-Min
    Song, In-Ho
    Yang, Jaesung
    Cho, Soohaeng
    Chung, Chan-Moon
    [J]. POLYMER CHEMISTRY, 2020, 11 (48) : 7685 - 7695