On Julia sets of postcritically finite branched coverings - Part I - coding of Julia sets

被引:7
|
作者
Kameyama, A [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Dept Informat & Math Sci, Toyonaka, Osaka 5608531, Japan
关键词
Julia set; postcritically finite branched covering; Thurston equivalence; symbolic dynamics; coding map; self-similar set; fundamental group;
D O I
10.2969/jmsj/1191419125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define Julia sets for (topological) expanding postcritically finite branched coverings on S-2, and show the existence and the uniqueness of Julia sets. Our main aim is the investigation of codings of Julia sets (i.e. semiconjugacies between symbolic dynamics and Julia sets). In particular, it is proved that if two expanding branched coverings are combinatorially equivalent, then their Julia sets are topologically conjugate.
引用
收藏
页码:439 / 454
页数:16
相关论文
共 50 条
  • [41] JULIA SETS AND SELF-SIMILAR SETS
    KAMEYAMA, A
    TOPOLOGY AND ITS APPLICATIONS, 1993, 54 (1-3) : 241 - 251
  • [42] Mandelbrot sets in diversifying markets with Julia sets
    Moreno, Christian
    Manzanarez, Cesar
    REVISTA ECORFAN, 2010, 1 (02): : 158 - 168
  • [43] ATTRACTOR SETS AND JULIA SETS IN LOW DIMENSIONS
    Fletcher, A.
    CONFORMAL GEOMETRY AND DYNAMICS, 2019, 23 : 117 - 129
  • [44] Shadowing and ω-limit sets of circular Julia sets
    Barwell, Andrew D.
    Meddaugh, Jonathan
    Raines, Brian E.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 1045 - 1055
  • [45] Topological complexity of Julia sets
    Jianyong Qiao
    Science in China Series A: Mathematics, 1997, 40 : 1158 - 1165
  • [46] On uniformly disconnected Julia sets
    Alastair N. Fletcher
    Vyron Vellis
    Mathematische Zeitschrift, 2021, 299 : 853 - 866
  • [47] Julia sets of expanding polynomials
    Blokh, A
    Cleveland, C
    Misiurewicz, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1691 - 1718
  • [48] 2 EXAMPLES OF JULIA SETS
    BEARDON, AF
    NONLINEARITY, 1992, 5 (03) : 771 - 775
  • [49] Julia Sets of Orthogonal Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    Potential Analysis, 2019, 50 : 401 - 413
  • [50] Julia Sets in Parameter Spaces
    X. Buff
    C. Henriksen
    Communications in Mathematical Physics, 2001, 220 : 333 - 375