ATTRACTOR SETS AND JULIA SETS IN LOW DIMENSIONS

被引:1
|
作者
Fletcher, A. [1 ]
机构
[1] Northern Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA
来源
关键词
QUASI-REGULAR SEMIGROUPS; DYNAMICS;
D O I
10.1090/ecgd/334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If X is the attractor set of a conformal IFS (iterated function system) in dimension two or three, we prove that there exists a quasiregular semigroup G with a Julia set equal to X. We also show that in dimension two, with a further assumption similar to the open set condition, the same result can be achieved with a semigroup generated by one element. Consequently, in this case the attractor set is quasiconformally equivalent to the Julia set of a rational map.
引用
收藏
页码:117 / 129
页数:13
相关论文
共 50 条
  • [1] Dimensions of Julia sets of meromorphic functions
    Rippon, PJ
    Stallard, GM
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 71 : 669 - 683
  • [2] Pointwise dimensions on real Julia sets
    Schulz-Baldes, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (15): : 2887 - 2894
  • [3] Dimensions of Julia sets of hyperbolic meromorphic functions
    Stallard, GM
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 : 689 - 694
  • [4] Dimensions of Julia sets of hyperbolic entire functions
    Stallard, GM
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 263 - 270
  • [5] On the dimensions of Cantor Julia sets of rational maps
    Zhai, Yu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) : 772 - 780
  • [6] Julia sets converging to filled quadratic Julia sets
    Kozma, Robert T.
    Devaney, Robert L.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 171 - 184
  • [7] JULIA SETS
    POPPE, C
    [J]. PHYSICA D, 1984, 11 (03): : 403 - 403
  • [8] Julia sets and wild Cantor sets
    Fletcher, Alastair
    Wu, Jang-Mei
    [J]. GEOMETRIAE DEDICATA, 2015, 174 (01) : 169 - 176
  • [9] Julia sets and wild Cantor sets
    Alastair Fletcher
    Jang-Mei Wu
    [J]. Geometriae Dedicata, 2015, 174 : 169 - 176
  • [10] Fractals: Sets of Julia and Sets of Mandelbrot
    Miranda, Aldicio J.
    [J]. SIGMAE, 2012, 1 (01): : 110 - 118