On Julia sets of postcritically finite branched coverings - Part I - coding of Julia sets

被引:7
|
作者
Kameyama, A [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Dept Informat & Math Sci, Toyonaka, Osaka 5608531, Japan
关键词
Julia set; postcritically finite branched covering; Thurston equivalence; symbolic dynamics; coding map; self-similar set; fundamental group;
D O I
10.2969/jmsj/1191419125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define Julia sets for (topological) expanding postcritically finite branched coverings on S-2, and show the existence and the uniqueness of Julia sets. Our main aim is the investigation of codings of Julia sets (i.e. semiconjugacies between symbolic dynamics and Julia sets). In particular, it is proved that if two expanding branched coverings are combinatorially equivalent, then their Julia sets are topologically conjugate.
引用
下载
收藏
页码:439 / 454
页数:16
相关论文
共 50 条
  • [21] A PROBLEM ON JULIA SETS
    BAKER, IN
    EREMENKO, A
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1987, 12 (02): : 229 - 236
  • [22] Continuity of Julia sets
    伍胜健
    ScienceinChina,SerA., 1999, Ser.A.1999 (03) : 281 - 285
  • [23] Consensus of Julia Sets
    Sun, Weihua
    Liu, Shutang
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [24] Smooth Julia Sets
    Sekovanov V.S.
    Journal of Mathematical Sciences, 2020, 245 (2) : 202 - 216
  • [25] The Thurston equivalence for postcritically finite branched coverings
    Kameyama, A
    OSAKA JOURNAL OF MATHEMATICS, 2001, 38 (03) : 565 - 610
  • [26] SYMMETRIES OF JULIA SETS
    BEARDON, AF
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 : 576 - 582
  • [27] JULIA SETS IN THE QUATERNIONS
    NORTON, A
    COMPUTERS & GRAPHICS, 1989, 13 (02) : 267 - 278
  • [28] Continuity of Julia sets
    伍胜健
    Science China Mathematics, 1999, (03) : 281 - 285
  • [29] HYPERCHAOS AND JULIA SETS
    ROSSLER, OE
    KAHLERT, C
    PARISI, J
    PEINKE, J
    ROHRICHT, B
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1986, 41 (06): : 819 - 822
  • [30] PERCOLATION AND JULIA SETS
    AHMED, E
    ABDUSALAM, HA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (02) : 287 - 292