Julia sets of expanding polynomials

被引:5
|
作者
Blokh, A
Cleveland, C
Misiurewicz, M
机构
[1] Univ Alabama, Dept Math, Birmingham, AL 35294 USA
[2] IUPUI, Dept Math Sci, Indianapolis, IN 46202 USA
关键词
D O I
10.1017/S0143385705000210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue studying branched covering maps of the plane with expanding properties, which we call expanding polymodials. They are analogous to piecewise expanding interval maps and have properties similar to those of complex polynomials (in particular, the Julia set and a lot of other notions from complex dynamics can be defined for expanding polymodials). In this paper we include the case when the Julia set is disconnected, study its topological properties and its Hausdorff dimension.
引用
下载
收藏
页码:1691 / 1718
页数:28
相关论文
共 50 条
  • [1] Julia Sets of Orthogonal Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    Potential Analysis, 2019, 50 : 401 - 413
  • [2] Julia Sets of Orthogonal Polynomials
    Christiansen, Jacob Stordal
    Henriksen, Christian
    Pedersen, Henrik Laurberg
    Petersen, Carsten Lunde
    POTENTIAL ANALYSIS, 2019, 50 (03) : 401 - 413
  • [3] The topology of Julia sets for polynomials
    尹永成
    Science China Mathematics, 2002, (08) : 1020 - 1024
  • [4] The topology of Julia sets for polynomials
    Yin, YC
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2002, 45 (08): : 1020 - 1024
  • [5] Topology of Julia sets for polynomials
    Yin, Yongcheng
    Science in China, Series A: Mathematics, Physics, Astronomy, 2002, 45 (08):
  • [6] CHEBYSHEV POLYNOMIALS FOR JULIA SETS
    KAMO, SO
    BORODIN, PA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1994, (05): : 65 - 67
  • [7] The topology of Julia sets for polynomials
    Yongcheng Yin
    Science in China Series A: Mathematics, 2002, 45 : 1020 - 1024
  • [8] STABLY INTERESTING JULIA SETS OF POLYNOMIALS
    BUZZARD, GT
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (11): : 1013 - 1018
  • [9] On biaccessible points in Julia sets of polynomials
    Zdunik, A
    FUNDAMENTA MATHEMATICAE, 2000, 163 (03) : 277 - 286
  • [10] Orthogonal Polynomials on Generalized Julia Sets
    Alpan, Gokalp
    Goncharov, Alexander
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (08) : 1845 - 1864