STABLY INTERESTING JULIA SETS OF POLYNOMIALS

被引:0
|
作者
BUZZARD, GT
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Newhouse [1] introduced the concept of thickness and used it to prove that Cantor sets in the line must intersect under certain conditions. The usual definitions of thickness do not generalize to higher dimensions, but in this Note we produce two polynomials such that any holomorphic functions which are sufficiently small C-2 perturbations of these polynomials have Julia sets which contain intersecting Canter sets. Moreover, one of the polynomials is of the form z(2)+c with \c\ large.
引用
下载
收藏
页码:1013 / 1018
页数:6
相关论文
共 50 条
  • [1] Julia sets of expanding polynomials
    Blokh, A
    Cleveland, C
    Misiurewicz, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1691 - 1718
  • [2] Julia Sets of Orthogonal Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    Potential Analysis, 2019, 50 : 401 - 413
  • [3] Julia Sets of Orthogonal Polynomials
    Christiansen, Jacob Stordal
    Henriksen, Christian
    Pedersen, Henrik Laurberg
    Petersen, Carsten Lunde
    POTENTIAL ANALYSIS, 2019, 50 (03) : 401 - 413
  • [4] The topology of Julia sets for polynomials
    尹永成
    Science China Mathematics, 2002, (08) : 1020 - 1024
  • [5] The topology of Julia sets for polynomials
    Yin, YC
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2002, 45 (08): : 1020 - 1024
  • [6] Topology of Julia sets for polynomials
    Yin, Yongcheng
    Science in China, Series A: Mathematics, Physics, Astronomy, 2002, 45 (08):
  • [7] CHEBYSHEV POLYNOMIALS FOR JULIA SETS
    KAMO, SO
    BORODIN, PA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1994, (05): : 65 - 67
  • [8] The topology of Julia sets for polynomials
    Yongcheng Yin
    Science in China Series A: Mathematics, 2002, 45 : 1020 - 1024
  • [9] On biaccessible points in Julia sets of polynomials
    Zdunik, A
    FUNDAMENTA MATHEMATICAE, 2000, 163 (03) : 277 - 286
  • [10] Orthogonal Polynomials on Generalized Julia Sets
    Alpan, Gokalp
    Goncharov, Alexander
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (08) : 1845 - 1864