Julia sets of expanding polynomials

被引:5
|
作者
Blokh, A
Cleveland, C
Misiurewicz, M
机构
[1] Univ Alabama, Dept Math, Birmingham, AL 35294 USA
[2] IUPUI, Dept Math Sci, Indianapolis, IN 46202 USA
关键词
D O I
10.1017/S0143385705000210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue studying branched covering maps of the plane with expanding properties, which we call expanding polymodials. They are analogous to piecewise expanding interval maps and have properties similar to those of complex polynomials (in particular, the Julia set and a lot of other notions from complex dynamics can be defined for expanding polymodials). In this paper we include the case when the Julia set is disconnected, study its topological properties and its Hausdorff dimension.
引用
收藏
页码:1691 / 1718
页数:28
相关论文
共 50 条
  • [11] Filled Julia Sets of Chebyshev Polynomials
    Christiansen, Jacob Stordal
    Henriksen, Christian
    Pedersen, Henrik Laurberg
    Petersen, Carsten Lunde
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 12250 - 12263
  • [12] FEKETE POLYNOMIALS AND SHAPES OF JULIA SETS
    Lindsey, Kathryn A.
    Younsi, Malik
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (12) : 8489 - 8511
  • [13] Chebyshev Polynomials on Generalized Julia Sets
    Gökalp Alpan
    Computational Methods and Function Theory, 2016, 16 : 387 - 393
  • [14] INDECOMPOSABLE CONTINUA AND THE JULIA SETS OF POLYNOMIALS
    MAYER, JC
    ROGERS, JT
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (03) : 795 - 802
  • [15] The Julia sets of quadratic Cremer polynomials
    Blokh, Alexander
    Oversteegen, Lex
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (15) : 3038 - 3050
  • [16] Dynamics of polynomials with disconnected Julia sets
    Emerson, ND
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (04) : 801 - 834
  • [17] Orthogonal Polynomials on Generalized Julia Sets
    Gökalp Alpan
    Alexander Goncharov
    Complex Analysis and Operator Theory, 2017, 11 : 1845 - 1864
  • [18] Filled Julia Sets of Chebyshev Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    The Journal of Geometric Analysis, 2021, 31 : 12250 - 12263
  • [19] JULIA SETS OF POLYNOMIALS ARE UNIFORMLY PERFECT
    HINKKANEN, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 153 - 159
  • [20] Chebyshev Polynomials on Generalized Julia Sets
    Alpan, Gokalp
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2016, 16 (03) : 387 - 393