Dynamics of polynomials with disconnected Julia sets

被引:8
|
作者
Emerson, ND [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
complex dynamical systems; Julia set;
D O I
10.3934/dcds.2003.9.801
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the structure of disconnected polynomial Julia sets. We consider polynomials with an arbitrary number of non-escaping critical points, of arbitrary multiplicity, which interact non-trivially. We use a combinatorial system of a tree with dynamics to give a sufficient condition for the Julia set a polynomial to be an area zero Cantor set. We show that there exist uncountably many combinatorially inequivalent polynomials, which satisfy this condition and have multiple non-escaping critical points, each of which accumulates at all the non-escaping critical points.
引用
收藏
页码:801 / 834
页数:34
相关论文
共 50 条
  • [1] Disconnected Julia sets of quartic polynomials and a new topology of the symbol space
    Katagata, Koh
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2008, 84 (07) : 117 - 122
  • [2] On uniformly disconnected Julia sets
    Alastair N. Fletcher
    Vyron Vellis
    Mathematische Zeitschrift, 2021, 299 : 853 - 866
  • [3] On uniformly disconnected Julia sets
    Fletcher, Alastair N.
    Vellis, Vyron
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 853 - 866
  • [4] Disconnected Julia sets as buried Julia components
    Xiao, Yingqing
    Yang, Fei
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (04)
  • [5] On the cycles of components of disconnected Julia sets
    Guizhen Cui
    Wenjuan Peng
    Mathematische Annalen, 2021, 381 : 971 - 1003
  • [6] On the cycles of components of disconnected Julia sets
    Cui, Guizhen
    Peng, Wenjuan
    MATHEMATISCHE ANNALEN, 2020, 381 (1-2) : 971 - 1003
  • [7] Disconnected Julia set and rotation sets
    Levin, G
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1996, 29 (01): : 1 - 22
  • [8] Elliptic Functions with Disconnected Julia Sets
    Koss, Lorelei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (06):
  • [9] Julia Sets of Orthogonal Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    Potential Analysis, 2019, 50 : 401 - 413
  • [10] Julia sets of expanding polynomials
    Blokh, A
    Cleveland, C
    Misiurewicz, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1691 - 1718