Chebyshev Polynomials on Generalized Julia Sets

被引:0
|
作者
Gökalp Alpan
机构
[1] Bilkent University,Department of Mathematics
关键词
Chebyshev polynomials; Extremal polynomials; Julia sets; Widom factors; 37F10; 41A50;
D O I
暂无
中图分类号
学科分类号
摘要
Let (fn)n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f_n)_{n=1}^\infty $$\end{document} be a sequence of non-linear polynomials satisfying some mild conditions. Furthermore, let Fm(z):=(fm∘fm-1⋯∘f1)(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_m(z):=(f_m\circ f_{m-1}\cdots \circ f_1)(z)$$\end{document} and ρm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _m$$\end{document} be the leading coefficient of Fm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_m$$\end{document}. It is shown that on the Julia set J(fn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{(f_n)}$$\end{document}, the Chebyshev polynomial of degree degFm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg {F_m}$$\end{document} is of the form Fm(z)/ρm-τm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_m(z)/\rho _m-\tau _m$$\end{document} for all m∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in \mathbb {N}$$\end{document} where τm∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _m\in \mathbb {C}$$\end{document}. This generalizes the result obtained for autonomous Julia sets in Kamo and Borodin (Mosc. Univ. Math. Bull. 49:44–45, 1994).
引用
下载
收藏
页码:387 / 393
页数:6
相关论文
共 50 条
  • [1] Chebyshev Polynomials on Generalized Julia Sets
    Alpan, Gokalp
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2016, 16 (03) : 387 - 393
  • [2] CHEBYSHEV POLYNOMIALS FOR JULIA SETS
    KAMO, SO
    BORODIN, PA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1994, (05): : 65 - 67
  • [3] Filled Julia Sets of Chebyshev Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    The Journal of Geometric Analysis, 2021, 31 : 12250 - 12263
  • [4] Filled Julia Sets of Chebyshev Polynomials
    Christiansen, Jacob Stordal
    Henriksen, Christian
    Pedersen, Henrik Laurberg
    Petersen, Carsten Lunde
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 12250 - 12263
  • [5] Orthogonal Polynomials on Generalized Julia Sets
    Alpan, Gokalp
    Goncharov, Alexander
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (08) : 1845 - 1864
  • [6] Orthogonal Polynomials on Generalized Julia Sets
    Gökalp Alpan
    Alexander Goncharov
    Complex Analysis and Operator Theory, 2017, 11 : 1845 - 1864
  • [7] Julia and Mandelbrot sets of Chebyshev families
    Peherstorfer, F
    Stroh, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (09): : 2463 - 2481
  • [8] Symmetries and Dynamics of Generalized Biquaternionic Julia Sets Defined by Various Polynomials
    Katunin, Andrzej
    SYMMETRY-BASEL, 2023, 15 (01):
  • [9] Julia sets of expanding polynomials
    Blokh, A
    Cleveland, C
    Misiurewicz, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1691 - 1718
  • [10] Julia Sets of Orthogonal Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    Potential Analysis, 2019, 50 : 401 - 413