Data-driven Koopman operator approach for computational neuroscience

被引:18
|
作者
Marrouch, Natasza [1 ]
Slawinska, Joanna [2 ]
Giannakis, Dimitrios [3 ]
Read, Heather L. [4 ]
机构
[1] Univ Connecticut, Dept Psychol Sci, Storrs, CT 06269 USA
[2] Univ Wisconsin, Dept Phys, Milwaukee, WI USA
[3] NYU, Courant Inst Math Sci, New York, NY USA
[4] Univ Connecticut, Dept Biomed Engn, Dept Psychol Sci, Storrs, CT USA
基金
美国国家科学基金会;
关键词
Koopman operator; Spectral decomposition; Nonlinear; Spatiotemporal dynamics; ECoG; Brain; Mismatch negativity; MISMATCH NEGATIVITY MMN; LAPLACIAN SPECTRAL-ANALYSIS; INDO-PACIFIC VARIABILITY; EVENT-RELATED POTENTIALS; STIMULUS DEVIANCE; AUDITORY-STIMULI; CORTEX; TIME; REDUCTION; PATTERNS;
D O I
10.1007/s10472-019-09666-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents a novel, nonlinear, data-driven signal processing method, which can help neuroscience researchers visualize and understand complex dynamical patterns in both time and space. Specifically, we present applications of a Koopman operator approach for eigendecomposition of electrophysiological signals into orthogonal, coherent components and examine their associated spatiotemporal dynamics. This approach thus provides enhanced capabilities over conventional computational neuroscience tools restricted to analyzing signals in either the time or space domains. This is achieved via machine learning and kernel methods for data-driven approximation of skew-product dynamical systems. The approximations successfully converge to theoretical values in the limit of long embedding windows. First, we describe the method, then using electrocorticographic (ECoG) data from a mismatch negativity experiment, we extract time-separable frequencies without bandpass filtering or prior selection of wavelet features. Finally, we discuss in detail two of the extracted components, Beta (similar to\) frequencies, and explore the spatiotemporal dynamics of high- and low- frequency components.
引用
收藏
页码:1155 / 1173
页数:19
相关论文
共 50 条
  • [1] Data-driven Koopman operator approach for computational neuroscience
    Natasza Marrouch
    Joanna Slawinska
    Dimitrios Giannakis
    Heather L. Read
    [J]. Annals of Mathematics and Artificial Intelligence, 2020, 88 : 1155 - 1173
  • [2] Data-driven spectral analysis of the Koopman operator
    Korda, Milan
    Putinar, Mihai
    Mezic, Igor
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (02) : 599 - 629
  • [3] Data-Driven Modeling of Automated Vehicles: Koopman Operator Approach and Its Application
    Kim, Jin Sung
    Chung, Chung Choo
    [J]. Journal of Institute of Control, Robotics and Systems, 2022, 28 (11) : 1038 - 1044
  • [4] Data-driven Distributed Learning of Multi-agent Systems: A Koopman Operator Approach
    Nandanoori, Sai Pushpak
    Pal, Seemita
    Sinha, Subhrajit
    Kundu, Soumya
    Agarwal, Khushbu
    Choudhury, Sutanay
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 5059 - 5066
  • [5] Data-driven identification of vehicle dynamics using Koopman operator
    Cibulka, Vit
    Hanis, Tomas
    Hromcik, Martin
    [J]. PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 167 - 172
  • [6] DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING THE KOOPMAN OPERATOR THEORY
    Dekhici, Benaissa
    Benyahia, Boumediene
    Cherki, Brahim
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2023, 85 (02): : 137 - 150
  • [7] Data-Driven Encoding: A New Numerical Method for Computation of the Koopman Operator
    Ng, Jerry
    Asada, H. Harry
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (07): : 3940 - 3947
  • [8] A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
    Williams, Matthew O.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (06) : 1307 - 1346
  • [9] Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator
    Tellez-Castro, Duvan
    Garcia-Tenorio, Camilo
    Mojica-Nava, Eduardo
    Sofrony, Jorge
    Vande Wouwer, Alain
    [J]. ACTUATORS, 2022, 11 (06)
  • [10] Analysis of a Class of Hyperbolic Systems via Data-Driven Koopman Operator
    Garcia-Tenorio, C.
    Tellez-Castro, D.
    Mojica-Nava, E.
    Vande Wouwer, A.
    [J]. 2019 23RD INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2019, : 566 - 571