Data-driven Koopman operator approach for computational neuroscience

被引:18
|
作者
Marrouch, Natasza [1 ]
Slawinska, Joanna [2 ]
Giannakis, Dimitrios [3 ]
Read, Heather L. [4 ]
机构
[1] Univ Connecticut, Dept Psychol Sci, Storrs, CT 06269 USA
[2] Univ Wisconsin, Dept Phys, Milwaukee, WI USA
[3] NYU, Courant Inst Math Sci, New York, NY USA
[4] Univ Connecticut, Dept Biomed Engn, Dept Psychol Sci, Storrs, CT USA
基金
美国国家科学基金会;
关键词
Koopman operator; Spectral decomposition; Nonlinear; Spatiotemporal dynamics; ECoG; Brain; Mismatch negativity; MISMATCH NEGATIVITY MMN; LAPLACIAN SPECTRAL-ANALYSIS; INDO-PACIFIC VARIABILITY; EVENT-RELATED POTENTIALS; STIMULUS DEVIANCE; AUDITORY-STIMULI; CORTEX; TIME; REDUCTION; PATTERNS;
D O I
10.1007/s10472-019-09666-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents a novel, nonlinear, data-driven signal processing method, which can help neuroscience researchers visualize and understand complex dynamical patterns in both time and space. Specifically, we present applications of a Koopman operator approach for eigendecomposition of electrophysiological signals into orthogonal, coherent components and examine their associated spatiotemporal dynamics. This approach thus provides enhanced capabilities over conventional computational neuroscience tools restricted to analyzing signals in either the time or space domains. This is achieved via machine learning and kernel methods for data-driven approximation of skew-product dynamical systems. The approximations successfully converge to theoretical values in the limit of long embedding windows. First, we describe the method, then using electrocorticographic (ECoG) data from a mismatch negativity experiment, we extract time-separable frequencies without bandpass filtering or prior selection of wavelet features. Finally, we discuss in detail two of the extracted components, Beta (similar to\) frequencies, and explore the spatiotemporal dynamics of high- and low- frequency components.
引用
收藏
页码:1155 / 1173
页数:19
相关论文
共 50 条
  • [31] Integrating autoencoder with Koopman operator to design a linear data-driven model predictive controller
    Wang, Xiaonian
    Ayachi, Sheel
    Corbett, Brandon
    Mhaskar, Prashant
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2024,
  • [32] Data-driven moving horizon state estimation of nonlinear processes using Koopman operator
    Yin, Xunyuan
    Qin, Yan
    Liu, Jinfeng
    Huang, Biao
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 200 : 481 - 492
  • [33] Enhancement for Robustness of Koopman Operator-based Data-driven Mobile Robotic Systems
    Shi, Lu
    Karydis, Konstantinos
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 2503 - 2510
  • [34] Data-driven discovery of Koopman eigenfunctions for control
    Kaiser, Eurika
    Kutz, J. Nathan
    Brunton, Steven L.
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [35] Data-Driven Computational Methods: Parameter and Operator Estimations.
    Kantas, Nikolas
    [J]. SIAM REVIEW, 2020, 62 (04) : 992 - 993
  • [36] Reduced-order models for coupled dynamical systems: Data-driven methods and the Koopman operator
    Santos Gutierrez, Manuel
    Lucarini, Valerio
    Chekroun, Mickael D.
    Ghil, Michael
    [J]. CHAOS, 2021, 31 (05)
  • [37] Nonlinear System Identification of Tremors Dynamics: A Data-driven Approximation Using Koopman Operator Theory
    Xue, Xiangming
    Iyer, Ashwin
    Roque, Daniel
    Sharma, Nitin
    [J]. 2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,
  • [38] Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator
    Bakhtiaridoust, Mohammadhosein
    Yadegar, Meysam
    Meskin, Nader
    [J]. ISA TRANSACTIONS, 2023, 134 : 200 - 211
  • [39] Data-driven distributed voltage control for microgrids: A Koopman-based approach
    Toro, Vladimir
    Tellez-Castro, Duvan
    Mojica-Nava, Eduardo
    Rakoto-Ravalontsalama, Naly
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 145
  • [40] Data-Driven quasi-LPV Model Predictive Control Using Koopman Operator Techniques
    Cisneros, Pablo S. G.
    Datar, Adwait
    Goettsch, Patrick
    Werner, Herbert
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 6062 - 6068