Data-driven Koopman operator approach for computational neuroscience

被引:18
|
作者
Marrouch, Natasza [1 ]
Slawinska, Joanna [2 ]
Giannakis, Dimitrios [3 ]
Read, Heather L. [4 ]
机构
[1] Univ Connecticut, Dept Psychol Sci, Storrs, CT 06269 USA
[2] Univ Wisconsin, Dept Phys, Milwaukee, WI USA
[3] NYU, Courant Inst Math Sci, New York, NY USA
[4] Univ Connecticut, Dept Biomed Engn, Dept Psychol Sci, Storrs, CT USA
基金
美国国家科学基金会;
关键词
Koopman operator; Spectral decomposition; Nonlinear; Spatiotemporal dynamics; ECoG; Brain; Mismatch negativity; MISMATCH NEGATIVITY MMN; LAPLACIAN SPECTRAL-ANALYSIS; INDO-PACIFIC VARIABILITY; EVENT-RELATED POTENTIALS; STIMULUS DEVIANCE; AUDITORY-STIMULI; CORTEX; TIME; REDUCTION; PATTERNS;
D O I
10.1007/s10472-019-09666-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents a novel, nonlinear, data-driven signal processing method, which can help neuroscience researchers visualize and understand complex dynamical patterns in both time and space. Specifically, we present applications of a Koopman operator approach for eigendecomposition of electrophysiological signals into orthogonal, coherent components and examine their associated spatiotemporal dynamics. This approach thus provides enhanced capabilities over conventional computational neuroscience tools restricted to analyzing signals in either the time or space domains. This is achieved via machine learning and kernel methods for data-driven approximation of skew-product dynamical systems. The approximations successfully converge to theoretical values in the limit of long embedding windows. First, we describe the method, then using electrocorticographic (ECoG) data from a mismatch negativity experiment, we extract time-separable frequencies without bandpass filtering or prior selection of wavelet features. Finally, we discuss in detail two of the extracted components, Beta (similar to\) frequencies, and explore the spatiotemporal dynamics of high- and low- frequency components.
引用
收藏
页码:1155 / 1173
页数:19
相关论文
共 50 条
  • [41] Data-driven modelling of brain activity using neural networks, diffusion maps, and the Koopman operator
    Gallos, Ioannis K.
    Lehmberg, Daniel
    Dietrich, Felix
    Siettos, Constantinos
    [J]. CHAOS, 2024, 34 (01)
  • [42] A Data-Driven Koopman Approach for Power System Nonlinear Dynamic Observability Analysis
    Xu, Yijun
    Wang, Qinling
    Mili, Lamine
    Zheng, Zongsheng
    Gu, Wei
    Lu, Shuai
    Wu, Zhi
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) : 4090 - 4104
  • [43] Extending Data-Driven Koopman Analysis to Actuated Systems
    Williams, Matthew O.
    Hemati, Maziar S.
    Dawson, Scott T. M.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    [J]. IFAC PAPERSONLINE, 2016, 49 (18): : 704 - 709
  • [44] Data-driven state-space and Koopman operator models of coherent state dynamics on invariant manifolds
    Constante-Amores, C. Ricardo
    Graham, Michael D.
    [J]. JOURNAL OF FLUID MECHANICS, 2024, 984
  • [45] Gain-Preserving Data-Driven Approximation of the Koopman Operator and Its Application in Robust Controller Design
    Hara, Keita
    Inoue, Masaki
    [J]. MATHEMATICS, 2021, 9 (09)
  • [46] Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator
    Li, Qianxiao
    Dietrich, Felix
    Bollt, Erik M.
    Kevrekidis, Ioannis G.
    [J]. CHAOS, 2017, 27 (10)
  • [47] Enhanced Koopman operator-based robust data-driven control for 3 degree of freedom autonomous underwater vehicles: A novel approach
    Rahmani, Mehran
    Redkar, Sangram
    [J]. OCEAN ENGINEERING, 2024, 307
  • [48] Data Driven Modeling of Turbocharger Turbine using Koopman Operator
    Zinage, Shrenik
    Jadhav, Suyash
    Zhou, Yifei
    Bilionis, Ilias
    Meckl, Peter
    [J]. IFAC PAPERSONLINE, 2022, 55 (37): : 175 - 180
  • [49] Data-driven computational mechanics
    Kirchdoerfer, T.
    Ortiz, M.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 304 : 81 - 101
  • [50] Data-Driven in Computational Plasticity
    Ibanez, R.
    Abisset-Chavanne, E.
    Cueto, E.
    Chinesta, F.
    [J]. PROCEEDINGS OF 21ST INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2018), 2018, 1960