Data-Driven Encoding: A New Numerical Method for Computation of the Koopman Operator

被引:1
|
作者
Ng, Jerry [1 ]
Asada, H. Harry [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Deep learning methods; machine learning for robot control; DYNAMIC-MODE DECOMPOSITION; SYSTEMS;
D O I
10.1109/LRA.2023.3273515
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter presents a data-driven method for constructing a Koopman linear model based on the Direct Encoding (DE) formula. The prevailing methods, Dynamic Mode Decomposition (DMD) and its extensions are based on least squares estimates that can be shown to be biased towards data that are densely populated. The DE formula consisting of inner products of a nonlinear state transition function with observable functions does not incur this biased estimation problem and thus serves as a desirable alternative to DMD. However, the original DE formula requires knowledge of the nonlinear state equation, which is not available in many practical applications. In this letter, the DE formula is extended to a data-driven method, Data-Driven Encoding (DDE) of Koopman operator, in which the inner products are calculated from data taken from a nonlinear dynamic system. An effective algorithm is presented for the computation of the inner products, and their convergence to true values is proven. Numerical experiments verify the effectiveness of DDE compared to Extended DMD. The experiments demonstrate robustness to data distribution and the convergent properties of DDE, guaranteeing accuracy improvements with additional sample points. Furthermore, DDE is applied to deep learning of the Koopman operator to further improve prediction accuracy.
引用
收藏
页码:3940 / 3947
页数:8
相关论文
共 50 条
  • [1] Data-driven spectral analysis of the Koopman operator
    Korda, Milan
    Putinar, Mihai
    Mezic, Igor
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (02) : 599 - 629
  • [2] Data-driven Koopman operator approach for computational neuroscience
    Marrouch, Natasza
    Slawinska, Joanna
    Giannakis, Dimitrios
    Read, Heather L.
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2020, 88 (11-12) : 1155 - 1173
  • [3] Data-driven Koopman operator approach for computational neuroscience
    Natasza Marrouch
    Joanna Slawinska
    Dimitrios Giannakis
    Heather L. Read
    [J]. Annals of Mathematics and Artificial Intelligence, 2020, 88 : 1155 - 1173
  • [4] DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING THE KOOPMAN OPERATOR THEORY
    Dekhici, Benaissa
    Benyahia, Boumediene
    Cherki, Brahim
    [J]. UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2023, 85 (02): : 137 - 150
  • [5] Data-driven transient stability analysis using the Koopman operator
    Matavalam, Amar Ramapuram
    Hou, Boya
    Choi, Hyungjin
    Bose, Subhonmesh
    Vaidya, Umesh
    [J]. International Journal of Electrical Power and Energy Systems, 2024, 162
  • [6] Data-driven identification of vehicle dynamics using Koopman operator
    Cibulka, Vit
    Hanis, Tomas
    Hromcik, Martin
    [J]. PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 167 - 172
  • [7] DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING THE KOOPMAN OPERATOR THEORY
    Dekhici, Benaissa
    Benyahia, Boumediene
    Cherki, Brahim
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2023, 85 (02): : 137 - 150
  • [8] A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
    Williams, Matthew O.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (06) : 1307 - 1346
  • [9] Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator
    Tellez-Castro, Duvan
    Garcia-Tenorio, Camilo
    Mojica-Nava, Eduardo
    Sofrony, Jorge
    Vande Wouwer, Alain
    [J]. ACTUATORS, 2022, 11 (06)
  • [10] Analysis of a Class of Hyperbolic Systems via Data-Driven Koopman Operator
    Garcia-Tenorio, C.
    Tellez-Castro, D.
    Mojica-Nava, E.
    Vande Wouwer, A.
    [J]. 2019 23RD INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2019, : 566 - 571