Analysis of a Class of Hyperbolic Systems via Data-Driven Koopman Operator

被引:0
|
作者
Garcia-Tenorio, C. [1 ]
Tellez-Castro, D. [1 ]
Mojica-Nava, E. [1 ]
Vande Wouwer, A. [2 ]
机构
[1] Univ Nacl Colombia, Fac Ingn, Bogota 111321, Colombia
[2] Univ Mons, Mons, Belgium
关键词
Data-driven; eigenfunction; Koopman operator; region of attraction;
D O I
10.1109/icstcc.2019.8885415
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The region of attraction of nonlinear dynamical systems is a critical factor in the analysis of equilibrium points. To have an approximation of the region of attraction, we propose the construction and analysis of eigenfunctions coming from the Koopman operator. The construction of eigenfunctions with associated unitary eigenvalue along with the location and local stability of equilibrium points provides a method to find the stable manifolds of saddle points, and in turn, the region of attraction of asymptotically stable points. The method relies on data collected from the trajectories of the underlying system and does not require the knowledge of the differential equation.
引用
收藏
页码:566 / 571
页数:6
相关论文
共 50 条
  • [1] Data-driven spectral analysis of the Koopman operator
    Korda, Milan
    Putinar, Mihai
    Mezic, Igor
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (02) : 599 - 629
  • [2] Direct data-driven stabilization of nonlinear affine systems via the Koopman operator
    Fu, Xingyun
    You, Keyou
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 2668 - 2673
  • [3] Analysis of the ROA of an anaerobic digestion process via data-driven Koopman operator
    Garcia-Tenorio, Camilo
    Mojica-Nava, Eduardo
    Sbarciog, Mihaela
    Vande Wouwer, Alain
    [J]. NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2021, 10 (01): : 109 - 131
  • [4] Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator
    Tellez-Castro, Duvan
    Garcia-Tenorio, Camilo
    Mojica-Nava, Eduardo
    Sofrony, Jorge
    Vande Wouwer, Alain
    [J]. ACTUATORS, 2022, 11 (06)
  • [5] Robust data-driven control for nonlinear systems using the Koopman operator
    Straesser, Robin
    Berberich, Julian
    Allgower, Frank
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 2257 - 2262
  • [6] Extending Data-Driven Koopman Analysis to Actuated Systems
    Williams, Matthew O.
    Hemati, Maziar S.
    Dawson, Scott T. M.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    [J]. IFAC PAPERSONLINE, 2016, 49 (18): : 704 - 709
  • [7] Data-driven Koopman operator approach for computational neuroscience
    Marrouch, Natasza
    Slawinska, Joanna
    Giannakis, Dimitrios
    Read, Heather L.
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2020, 88 (11-12) : 1155 - 1173
  • [8] Data-driven Koopman operator approach for computational neuroscience
    Natasza Marrouch
    Joanna Slawinska
    Dimitrios Giannakis
    Heather L. Read
    [J]. Annals of Mathematics and Artificial Intelligence, 2020, 88 : 1155 - 1173
  • [9] Data-driven Characterization of Recovery Energy in Controlled Dynamical Systems using Koopman Operator
    Ramachandran, Thiagarajan
    Nandanoori, Sai Pushpak
    Sinha, Subhrajit
    Bakker, Craig
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 2230 - 2235
  • [10] Data-driven Distributed Learning of Multi-agent Systems: A Koopman Operator Approach
    Nandanoori, Sai Pushpak
    Pal, Seemita
    Sinha, Subhrajit
    Kundu, Soumya
    Agarwal, Khushbu
    Choudhury, Sutanay
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 5059 - 5066