Analysis of spatiotemporal patterns in a single species reaction-diffusion model with spatiotemporal delay

被引:14
|
作者
Yang, Gaoxiang [1 ]
Xu, Jian [1 ]
机构
[1] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatiotemporal patterns; Turing bifurcation; Spatiotemporal delay; Multiple scale method; Amplitude equations; PERIODIC TRAVELING-WAVES; PREDATOR-PREY MODEL; TURING INSTABILITY; SYSTEM; BIFURCATION; STABILITY;
D O I
10.1016/j.nonrwa.2014.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Employing the theories of Turing bifurcation in the partial differential equations, we investigate the dynamical behavior of a single species reaction-diffusion model with spatiotemporal delay. The linear stability and the conditions for the occurrence of Turing bifurcation in this model are obtained. Moreover, the amplitude equations which represent different spatiotemporal patterns are also obtained near the Turing bifurcation point by using multiple scale method. In Turing space, it is found that the spatiotemporal distributions of the density of this researched species have spots pattern and stripes pattern. Finally, some numerical simulations corresponding to the different spatiotemporal patterns are given to verify our theoretical analysis. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 50 条
  • [41] Spatiotemporal dynamics of a reaction-diffusion model of pollen tube tip growth
    Chenwei Tian
    Qingyan Shi
    Xinping Cui
    Jingzhe Guo
    Zhenbiao Yang
    Junping Shi
    Journal of Mathematical Biology, 2019, 79 : 1319 - 1355
  • [42] Spatiotemporal dynamics of a reaction-diffusion model of pollen tube tip growth
    Tian, Chenwei
    Shi, Qingyan
    Cui, Xinping
    Guo, Jingzhe
    Yang, Zhenbiao
    Shi, Junping
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 79 (04) : 1319 - 1355
  • [43] Spatiotemporal Patterns of a Reaction–Diffusion Substrate–Inhibition Seelig Model
    Fengqi Yi
    Siyu Liu
    Necibe Tuncer
    Journal of Dynamics and Differential Equations, 2017, 29 : 219 - 241
  • [44] Controlling spatiotemporal chaos in oscillatory reaction-diffusion systems by time-delay autosynchronization
    Abteilung Physikalische Chemie, Fritz-Haber-Inst. Max-Planck-G., Faradayweg 4-6, 14195 Berlin, Germany
    1600, 173-184 (December 1, 2004):
  • [45] Pattern dynamics of a predator–prey reaction–diffusion model with spatiotemporal delay
    Jian Xu
    Gaoxiang Yang
    Hongguang Xi
    Jianzhong Su
    Nonlinear Dynamics, 2015, 81 : 2155 - 2163
  • [46] Stratified spatiotemporal chaos in anisotropic reaction-diffusion systems
    Bär, M
    Hagberg, A
    Meron, E
    Thiele, U
    PHYSICAL REVIEW LETTERS, 1999, 83 (13) : 2664 - 2667
  • [47] Spatiotemporal dynamics of reaction-diffusion models of interacting populations
    Guin, Lakshmi Narayan
    Mandal, Prashanta Kumar
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (17-18) : 4417 - 4427
  • [48] Spatiotemporal chaos and quasipatterns in coupled reaction-diffusion systems
    Castelino, Jennifer K.
    Ratliff, Daniel J.
    Rucklidge, Alastair M.
    Subramanian, Priya
    Topaz, Chad M.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 409
  • [49] Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems
    Krause, Andrew L.
    Klika, Vaclav
    Woolley, Thomas E.
    Gaffney, Eamonn A.
    PHYSICAL REVIEW E, 2018, 97 (05)
  • [50] Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system
    Owolabi, Kolade M.
    Karaagac, Berat
    CHAOS SOLITONS & FRACTALS, 2020, 141