Analysis of spatiotemporal patterns in a single species reaction-diffusion model with spatiotemporal delay

被引:14
|
作者
Yang, Gaoxiang [1 ]
Xu, Jian [1 ]
机构
[1] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatiotemporal patterns; Turing bifurcation; Spatiotemporal delay; Multiple scale method; Amplitude equations; PERIODIC TRAVELING-WAVES; PREDATOR-PREY MODEL; TURING INSTABILITY; SYSTEM; BIFURCATION; STABILITY;
D O I
10.1016/j.nonrwa.2014.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Employing the theories of Turing bifurcation in the partial differential equations, we investigate the dynamical behavior of a single species reaction-diffusion model with spatiotemporal delay. The linear stability and the conditions for the occurrence of Turing bifurcation in this model are obtained. Moreover, the amplitude equations which represent different spatiotemporal patterns are also obtained near the Turing bifurcation point by using multiple scale method. In Turing space, it is found that the spatiotemporal distributions of the density of this researched species have spots pattern and stripes pattern. Finally, some numerical simulations corresponding to the different spatiotemporal patterns are given to verify our theoretical analysis. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 50 条
  • [31] Spatiotemporal dynamics in a reaction-diffusion toxic-phytoplankton-zooplankton model
    Rao, Feng
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [32] Spatiotemporal reaction-diffusion patterns emerging on cylindrical surfaces due to global coupling
    Savin, I
    Nekhamkina, O
    Sheintuch, M
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (16): : 7678 - 7684
  • [33] DYNAMICS AND SPATIOTEMPORAL PATTERN FORMATIONS OF A HOMOGENEOUS REACTION-DIFFUSION THOMAS MODEL
    Zhang, Hongyan
    Liu, Siyu
    Zhang, Yue
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (05): : 1149 - 1164
  • [34] Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems
    Owolabi, Kolade M.
    Atangana, Abdon
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 2166 - 2189
  • [35] Oscillatory wave bifurcation and spatiotemporal patterns in fractional subhyperbolic reaction-diffusion systems
    Datsko, Bohdan
    Gafiychuk, Vasyl
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 142
  • [36] SPATIOTEMPORAL DYNAMICS OF A REACTION-DIFFUSION SCHISTOSOMIASIS MODEL WITH SEASONAL AND NONLOCAL TRANSMISSIONS
    Fang, Cheng
    Wu, Peng
    Geng, Yunfeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024,
  • [37] Spatiotemporal structures in a model with delay and diffusion
    Bestehorn, M
    Grigorieva, EV
    Kaschenko, SA
    PHYSICAL REVIEW E, 2004, 70 (02): : 12 - 1
  • [38] Pulse bifurcation and transition to spatiotemporal chaos in an excitable reaction-diffusion model
    Zimmermann, MG
    Firle, SO
    Natiello, MA
    Hildebrand, M
    Eiswirth, M
    Bar, M
    Bangia, AK
    Kevrekidis, IG
    PHYSICA D, 1997, 110 (1-2): : 92 - 104
  • [39] Spatiotemporal dynamics of a reaction-diffusion epidemic model with nonlinear incidence rate
    Cai, Yongli
    Wang, Weiming
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [40] The impact of media on the spatiotemporal pattern dynamics of a reaction-diffusion epidemic model
    Meng, Xin-You
    Zhang, Tao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (04) : 4034 - 4047