Analysis of spatiotemporal patterns in a single species reaction-diffusion model with spatiotemporal delay

被引:14
|
作者
Yang, Gaoxiang [1 ]
Xu, Jian [1 ]
机构
[1] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatiotemporal patterns; Turing bifurcation; Spatiotemporal delay; Multiple scale method; Amplitude equations; PERIODIC TRAVELING-WAVES; PREDATOR-PREY MODEL; TURING INSTABILITY; SYSTEM; BIFURCATION; STABILITY;
D O I
10.1016/j.nonrwa.2014.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Employing the theories of Turing bifurcation in the partial differential equations, we investigate the dynamical behavior of a single species reaction-diffusion model with spatiotemporal delay. The linear stability and the conditions for the occurrence of Turing bifurcation in this model are obtained. Moreover, the amplitude equations which represent different spatiotemporal patterns are also obtained near the Turing bifurcation point by using multiple scale method. In Turing space, it is found that the spatiotemporal distributions of the density of this researched species have spots pattern and stripes pattern. Finally, some numerical simulations corresponding to the different spatiotemporal patterns are given to verify our theoretical analysis. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 50 条
  • [21] Spatiotemporal Evolution of Coinfection Dynamics: A Reaction-Diffusion Model
    Le, Thi Minh Thao
    Madec, Sten
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2025, 37 (01) : 317 - 362
  • [22] Spatiotemporal patterns in coupled reaction-diffusion systems with nonidentical kinetics
    Fan, Wei-li
    Deng, Teng-kun
    Liu, Shuang
    Liu, Ruo-qi
    He, Ya-feng
    Liu, Ya-hui
    Liu, Yi-ning
    Liu, Fu-cheng
    PHYSICAL REVIEW E, 2025, 111 (02)
  • [23] Effect of delay on pattern formation of a Rosenzweig-MacArthur type reaction-diffusion model with spatiotemporal delay
    Yang, Gao-Xiang
    Li, Xiao-Yu
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2022, 15 (04)
  • [24] Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems
    Kawamura, Yoji
    Shirasaka, Sho
    Yanagita, Tatsuo
    Nakao, Hiroya
    PHYSICAL REVIEW E, 2017, 96 (01)
  • [25] Periodic spatiotemporal patterns in a two-dimensional two-variable reaction-diffusion model
    Kawczynski, Andrzej L.
    Leda, Marcin
    PHYSICAL REVIEW E, 2006, 73 (05):
  • [26] Existence of spatiotemporal patterns in the reaction-diffusion predator-prey model incorporating prey refuge
    Guin, Lakshmi Narayan
    Mondal, Benukar
    Chakravarty, Santabrata
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2016, 9 (06)
  • [27] Spatiotemporal antiresonance in coupled reaction-diffusion systems
    Pal, Krishnendu
    Paul, Shibashis
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [28] Parametric spatiotemporal oscillation in reaction-diffusion systems
    Ghosh, Shyamolina
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [29] Stability analysis of spatiotemporal reaction-diffusion mathematical model incorporating the varicella virus transmission
    Hariharan, S.
    Shangerganesh, L.
    Debbouche, A.
    Antonov, V.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (12):
  • [30] Spatiotemporal dynamics analysis and optimal control method for an SI reaction-diffusion propagation model
    Zhu, Linhe
    Huang, Xiaoyuan
    Liu, Ying
    Zhang, Zhengdi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (02)