Periodic spatiotemporal patterns in a two-dimensional two-variable reaction-diffusion model

被引:2
|
作者
Kawczynski, Andrzej L. [1 ]
Leda, Marcin [1 ]
机构
[1] Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 05期
关键词
D O I
10.1103/PhysRevE.73.056208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Periodic spatiotemporal two-dimensional (2D) asymptotic patterns in an excitable two-variable thermochemical (reaction-diffusion) system are shown. In a one-dimensional system the traveling impulse which reflects from impermeable boundaries is a stable asymptotic solution if the diffusion coefficient of the reactant is greater than the thermal diffusivity of the system. Periodic patterns of two symmetries are presented in the 2D system: the impulse of excitation propagating along the diagonal of a square spatial domain and a structure consisting of curved impulses which propagate in the direction perpendicular to one side of a rectangular domain.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Breaking of translational symmetry of a traveling planar impulse in a two-dimensional two-variable reaction-diffusion model
    Kawczynski, AL
    Leda, M
    Legawiec, B
    [J]. PHYSICAL REVIEW E, 2006, 73 (04):
  • [2] Modulated two-dimensional patterns in reaction-diffusion systems
    Kuske, R
    Milewski, P
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1999, 10 : 157 - 184
  • [3] Two-dimensional model of a reaction-diffusion system as a typewriter
    Kawczynski, AL
    Legawiec, B
    [J]. PHYSICAL REVIEW E, 2001, 64 (05) : 4
  • [4] Two types of sources of wave trains in a two-variable chemical model of a bistable reaction-diffusion system
    Leda, M
    Kawczynski, AL
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (38): : 7660 - 7670
  • [5] New type of the source of travelling impulses in two-variable model of reaction-diffusion system
    Kawczynski, Andrzej L.
    Nowakowski, Bogdan
    [J]. REACTION KINETICS MECHANISMS AND CATALYSIS, 2016, 118 (01) : 115 - 127
  • [6] Moving and jumping spot in a two-dimensional reaction-diffusion model
    Xie, Shuangquan
    Kolokolnikov, Theodore
    [J]. NONLINEARITY, 2017, 30 (04) : 1536 - 1563
  • [7] Pattern formation for a two-dimensional reaction-diffusion model with chemotaxis
    Ma, Manjun
    Gao, Meiyan
    Carretero-Gonzalez, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1883 - 1909
  • [8] Two-dimensional patterns in reaction-diffusion systems: an analytical tool for the experimentalist
    Giovambattista, N
    Bellini, M
    Deza, R
    [J]. INVERSE PROBLEMS, 2000, 16 (03) : 811 - 819
  • [9] Target patterns in two-dimensional heterogeneous oscillatory reaction-diffusion systems
    Stich, M
    Mikhailov, AS
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 215 (01) : 38 - 45
  • [10] TWO-DIMENSIONAL REACTION-DIFFUSION EQUATIONS WITH MEMORY
    Conti, Monica
    Gatti, Stefania
    Grasselli, Maurizio
    Pata, Vittorino
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (04) : 607 - 643