Spatiotemporal Patterns of a Reaction–Diffusion Substrate–Inhibition Seelig Model

被引:0
|
作者
Fengqi Yi
Siyu Liu
Necibe Tuncer
机构
[1] Harbin Engineering University,Department of Applied Mathematics
[2] Florida Atlantic University,Department of Mathematical Sciences
关键词
Seelig reaction–diffusion chemical model; Invariant rectangle; Lumped parameter assumption; Global bifurcation analysis; Turing patterns;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the spatiotemporal patterns of a reaction–diffusion substrate–inhibition chemical Seelig model are considered. We first prove that this parabolic Seelig model has an invariant rectangle in the phase plane which attracts all the solutions of the model regardless of the initial values. Then, we consider the long time behaviors of the solutions in the invariant rectangle. In particular, we prove that, under suitable “lumped parameter assumption” conditions, these solutions either converge exponentially to the unique positive constant steady states or to the spatially homogeneous periodic solutions. Finally, we study the existence and non-existence of Turing patterns. To find parameter ranges where system does not exhibit Turing patterns, we use the properties of non-constant steady states, including obtaining several useful estimates. To seek the parameter ranges where system possesses Turing patterns, we use the techniques of global bifurcation theory. These two different parameter ranges are distinguished in a delicate bifurcation diagram. Moreover, numerical experiments are also presented to support and strengthen our analytical analysis.
引用
收藏
页码:219 / 241
页数:22
相关论文
共 50 条
  • [1] Spatiotemporal Patterns of a Reaction-Diffusion Substrate-Inhibition Seelig Model
    Yi, Fengqi
    Liu, Siyu
    Tuncer, Necibe
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (01) : 219 - 241
  • [2] Cross-diffusion induced spatiotemporal patterns in Schnakenberg reaction–diffusion model
    Rui Yang
    Nonlinear Dynamics, 2022, 110 : 1753 - 1766
  • [3] Analysis of spatiotemporal patterns in a single species reaction-diffusion model with spatiotemporal delay
    Yang, Gaoxiang
    Xu, Jian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 54 - 65
  • [4] Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model
    Yaying Dong
    Shunli Zhang
    Shanbing Li
    Advances in Difference Equations, 2016
  • [5] Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model
    Dong, Yaying
    Zhang, Shunli
    Li, Shanbing
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 15
  • [6] Cross-diffusion induced spatiotemporal patterns in Schnakenberg reaction-diffusion model
    Yang, Rui
    NONLINEAR DYNAMICS, 2022, 110 (02) : 1753 - 1766
  • [7] Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme
    Peng, Rui
    Yi, Feng-qi
    Zhao, Xiao-qiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (06) : 2465 - 2498
  • [8] Spatiotemporal Patterns in a Delayed Reaction-Diffusion Mussel-Algae Model
    Shen, Zuolin
    Wei, Junjie
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (12):
  • [9] Spatiotemporal Patterns of a Host-Generalist Parasitoid Reaction-Diffusion Model
    Ma, Zhan-Ping
    Cheng, Zhi-Bo
    Liang, Wei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (07):
  • [10] Bifurcation analysis and spatiotemporal patterns in delayed Schnakenberg reaction-diffusion model
    Yang, Rui
    APPLICABLE ANALYSIS, 2023, 102 (02) : 672 - 693