Spatiotemporal Patterns of a Reaction–Diffusion Substrate–Inhibition Seelig Model

被引:0
|
作者
Fengqi Yi
Siyu Liu
Necibe Tuncer
机构
[1] Harbin Engineering University,Department of Applied Mathematics
[2] Florida Atlantic University,Department of Mathematical Sciences
关键词
Seelig reaction–diffusion chemical model; Invariant rectangle; Lumped parameter assumption; Global bifurcation analysis; Turing patterns;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the spatiotemporal patterns of a reaction–diffusion substrate–inhibition chemical Seelig model are considered. We first prove that this parabolic Seelig model has an invariant rectangle in the phase plane which attracts all the solutions of the model regardless of the initial values. Then, we consider the long time behaviors of the solutions in the invariant rectangle. In particular, we prove that, under suitable “lumped parameter assumption” conditions, these solutions either converge exponentially to the unique positive constant steady states or to the spatially homogeneous periodic solutions. Finally, we study the existence and non-existence of Turing patterns. To find parameter ranges where system does not exhibit Turing patterns, we use the properties of non-constant steady states, including obtaining several useful estimates. To seek the parameter ranges where system possesses Turing patterns, we use the techniques of global bifurcation theory. These two different parameter ranges are distinguished in a delicate bifurcation diagram. Moreover, numerical experiments are also presented to support and strengthen our analytical analysis.
引用
收藏
页码:219 / 241
页数:22
相关论文
共 50 条
  • [21] Periodic spatiotemporal patterns in a two-dimensional two-variable reaction-diffusion model
    Kawczynski, Andrzej L.
    Leda, Marcin
    PHYSICAL REVIEW E, 2006, 73 (05):
  • [22] Existence of spatiotemporal patterns in the reaction-diffusion predator-prey model incorporating prey refuge
    Guin, Lakshmi Narayan
    Mondal, Benukar
    Chakravarty, Santabrata
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2016, 9 (06)
  • [23] SPATIOTEMPORAL PATTERNS IN A ONE-DIMENSIONAL OPEN REACTION DIFFUSION SYSTEM
    TAM, WY
    SWINNEY, HL
    PHYSICA D, 1990, 46 (01): : 10 - 22
  • [24] Spatiotemporal patterns in coupled reaction-diffusion systems with nonidentical kinetics
    Fan, Wei-li
    Deng, Teng-kun
    Liu, Shuang
    Liu, Ruo-qi
    He, Ya-feng
    Liu, Ya-hui
    Liu, Yi-ning
    Liu, Fu-cheng
    PHYSICAL REVIEW E, 2025, 111 (02)
  • [25] Spatiotemporal patterns induced by cross-diffusion on vegetation model
    Xu, Shuo
    Zhang, Chunrui
    AIMS MATHEMATICS, 2022, 7 (08): : 14076 - 14098
  • [26] Spatiotemporal Evolution of Coinfection Dynamics: A Reaction-Diffusion Model
    Le, Thi Minh Thao
    Madec, Sten
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2025, 37 (01) : 317 - 362
  • [27] Spatiotemporal patterns in a model of heterogeneous reaction in a porous catalyst particle
    Peskov, NV
    PHYSICA D, 2000, 137 (3-4): : 316 - 332
  • [28] Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction–diffusion systems
    Kolade M. Owolabi
    Abdon Atangana
    Computational and Applied Mathematics, 2018, 37 : 2166 - 2189
  • [29] Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems
    Kawamura, Yoji
    Shirasaka, Sho
    Yanagita, Tatsuo
    Nakao, Hiroya
    PHYSICAL REVIEW E, 2017, 96 (01)
  • [30] Diffusion induced homogeneity breaking instability of the solutions in a reaction-diffusion Sporns-Seelig system
    Wang, Pu
    Gao, Yanbin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (02)