Monte Carlo methods for Bayesian analysis of constrained parameter problems

被引:15
|
作者
Chen, MH
Shao, QM
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[2] Univ Oregon, Dept Math, Eugene, OR 97404 USA
基金
美国国家科学基金会;
关键词
Bayesian computation; Bayesian hierarchical model; Gibbs sampling; marginal posterior density estimation;
D O I
10.1093/biomet/85.1.73
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Constraints on the parameters in a Bayesian hierarchical model typically make Bayesian computation and analysis complicated. Posterior densities that contain analytically intractable integrals as normalising constants depending on the hyperparameters often make implementation of Gibbs sampling or the Metropolis algorithms difficult. By, using reweighting mixtures (Geyer, 1995), we develop alternative simulation-based methods to determine properties of the desired Bayesian posterior distribution. Necessary theory and two illustrative examples are provided.
引用
收藏
页码:73 / 87
页数:15
相关论文
共 50 条
  • [21] Some adaptive Monte Carlo methods for Bayesian inference
    Tierney, L
    MINING AND MODELING MASSIVE DATA SETS IN SCIENCE, ENGINEERING, AND BUSINESS WITH A SUBTHEME IN ENVIRONMENTAL STATISTICS, 1997, 29 (01): : 552 - 552
  • [22] Bayesian Geosteering Using Sequential Monte Carlo Methods
    Veettil, Dilshad R. Akkam
    Clark, Kit
    PETROPHYSICS, 2020, 61 (01): : 99 - 111
  • [23] On sequential Monte Carlo sampling methods for Bayesian filtering
    Doucet, A
    Godsill, S
    Andrieu, C
    STATISTICS AND COMPUTING, 2000, 10 (03) : 197 - 208
  • [24] Iterative and Non-Iterative Methods of Monte Carlo as Actual Computing Methods Bayesian Analysis
    Zvyagin, L. S.
    PROCEEDINGS OF 2017 XX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM), 2017, : 18 - 21
  • [25] Emulation of higher-order tensors in manifold Monte Carlo methods for Bayesian Inverse Problems
    Lan, Shiwei
    Bui-Thanh, Tan
    Christie, Mike
    Girolami, Mark
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 308 : 81 - 101
  • [26] A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks
    Marino, Ines P.
    Zaikin, Alexey
    Miguez, Joaquin
    PLOS ONE, 2017, 12 (08):
  • [27] Monte Carlo methods in geophysical inverse problems
    Sambridge, M
    Mosegaard, K
    REVIEWS OF GEOPHYSICS, 2002, 40 (03) : 3 - 1
  • [28] Monte Carlo analysis: Classical and Bayesian applications
    WarrenHicks, WJ
    Butcher, JB
    HUMAN AND ECOLOGICAL RISK ASSESSMENT, 1996, 2 (04): : 643 - 649
  • [29] Parameter Tuning of the Firefly Algorithm by Standard Monte Carlo and Quasi-Monte Carlo Methods
    Joy, Geethu
    Huyck, Christian
    Yang, Xin-She
    COMPUTATIONAL SCIENCE, ICCS 2024, PT V, 2024, 14836 : 242 - 253
  • [30] RESAMPLING STRATEGY IN SEQUENTIAL MONTE CARLO FOR CONSTRAINED SAMPLING PROBLEMS
    Cai, Chencheng
    Chen, Rong
    Lin, Ming
    STATISTICA SINICA, 2024, 34 : 1187 - 1214