Monte Carlo methods for Bayesian analysis of constrained parameter problems

被引:15
|
作者
Chen, MH
Shao, QM
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[2] Univ Oregon, Dept Math, Eugene, OR 97404 USA
基金
美国国家科学基金会;
关键词
Bayesian computation; Bayesian hierarchical model; Gibbs sampling; marginal posterior density estimation;
D O I
10.1093/biomet/85.1.73
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Constraints on the parameters in a Bayesian hierarchical model typically make Bayesian computation and analysis complicated. Posterior densities that contain analytically intractable integrals as normalising constants depending on the hyperparameters often make implementation of Gibbs sampling or the Metropolis algorithms difficult. By, using reweighting mixtures (Geyer, 1995), we develop alternative simulation-based methods to determine properties of the desired Bayesian posterior distribution. Necessary theory and two illustrative examples are provided.
引用
收藏
页码:73 / 87
页数:15
相关论文
共 50 条
  • [41] Bayesian and non-Bayesian analysis of gamma stochastic frontier models by Markov chain Monte Carlo methods
    Kozumi, H
    Zhang, XY
    COMPUTATIONAL STATISTICS, 2005, 20 (04) : 575 - 593
  • [42] Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo
    Bui-Thanh, T.
    Girolami, M.
    INVERSE PROBLEMS, 2014, 30 (11)
  • [43] THE APPLICATION OF MONTE-CARLO METHODS TO PHYSICOCHEMICAL PROBLEMS
    FLUENDY, MAD
    SMITH, EB
    QUARTERLY REVIEWS, 1962, 16 (03): : 241 - 266
  • [44] Parallel Monte Carlo methods for least square problems
    Fathi-Vajargah, B
    Taft, K
    Vajargah, KF
    CCCT 2003, VOL 4, PROCEEDINGS: COMPUTER, COMMUNICATION AND CONTROL TECHNOLOGIES: I, 2003, : 299 - 304
  • [45] MONTE-CARLO METHODS AND INDUSTRIAL-PROBLEMS
    JESSOP, WN
    THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1956, 5 (03): : 158 - 165
  • [46] Perturbation Monte Carlo methods for the solution of inverse problems
    Hayakawa, CK
    Spanier, J
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 227 - 241
  • [47] A BAYESIAN MONTE CARLO ANALYSIS OF THE M-σ RELATION
    Morabito, Leah K.
    Dai, Xinyu
    ASTROPHYSICAL JOURNAL, 2012, 757 (02):
  • [48] Sequentially Constrained Monte Carlo
    Golchi, Shirin
    Campbell, David A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 97 : 98 - 113
  • [49] Multilevel Sequential2 Monte Carlo for Bayesian inverse problems
    Latz, Jonas
    Papaioannou, Iason
    Ullmann, Elisabeth
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 368 : 154 - 178
  • [50] Binned Multilevel Monte Carlo for Bayesian Inverse Problems with Large Data
    Gantner, Robert N.
    Schillings, Claudia
    Schwab, Christoph
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXII, 2016, 104 : 511 - 519