Monte Carlo methods for Bayesian analysis of constrained parameter problems

被引:15
|
作者
Chen, MH
Shao, QM
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[2] Univ Oregon, Dept Math, Eugene, OR 97404 USA
基金
美国国家科学基金会;
关键词
Bayesian computation; Bayesian hierarchical model; Gibbs sampling; marginal posterior density estimation;
D O I
10.1093/biomet/85.1.73
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Constraints on the parameters in a Bayesian hierarchical model typically make Bayesian computation and analysis complicated. Posterior densities that contain analytically intractable integrals as normalising constants depending on the hyperparameters often make implementation of Gibbs sampling or the Metropolis algorithms difficult. By, using reweighting mixtures (Geyer, 1995), we develop alternative simulation-based methods to determine properties of the desired Bayesian posterior distribution. Necessary theory and two illustrative examples are provided.
引用
收藏
页码:73 / 87
页数:15
相关论文
共 50 条
  • [31] Multifidelity Approximate Bayesian Computation with Sequential Monte Carlo Parameter Sampling
    Prescott, Thomas P.
    Baker, Ruth E.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 788 - 817
  • [32] Monte Carlo analysis of inverse problems
    Mosegaard, K
    Sambridge, M
    INVERSE PROBLEMS, 2002, 18 (03) : R29 - R54
  • [33] A Monte Carlo approach to quantifying model error in Bayesian parameter estimation
    White, Staci A.
    Herbei, Radu
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 83 : 168 - 181
  • [34] Bayesian analysis of spectral mixture data using Markov chain Monte Carlo methods
    Moussaoui, S
    Carteret, C
    Brie, D
    Mohammad-Djafari, A
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2006, 81 (02) : 137 - 148
  • [35] Bayesian analysis of ROC curves using Markov-chain Monte Carlo methods
    Peng, FC
    Hall, WJ
    MEDICAL DECISION MAKING, 1996, 16 (04) : 404 - 411
  • [36] Solar Bayesian Analysis Toolkit-A New Markov Chain Monte Carlo IDL Code for Bayesian Parameter Inference
    Anfinogentov, Sergey A.
    Nakariakov, Valery M.
    Pascoe, David J.
    Goddard, Christopher R.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2021, 252 (01):
  • [37] BAYESIAN-ANALYSIS OF CONSTRAINED PARAMETER AND TRUNCATED DATA PROBLEMS USING GIBBS SAMPLING
    GELFAND, AE
    SMITH, AFM
    LEE, TM
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (418) : 523 - 532
  • [38] Introduction: Bayesian models and Markov chain Monte Carlo methods
    Thomas, DC
    GENETIC EPIDEMIOLOGY, 2001, 21 : S660 - S661
  • [39] Parameter Estimation with Mixture Item Response Theory Models: A Monte Carlo Comparison of Maximum Likelihood and Bayesian Methods
    Finch, W. Holmes
    French, Brian F.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2012, 11 (01) : 167 - 178
  • [40] Bayesian and non-bayesian analysis of gamma stochastic frontier models by Markov Chain Monte Carlo methods
    Hideo Kozumi
    Xingyuan Zhang
    Computational Statistics, 2005, 20 : 575 - 593