A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks

被引:6
|
作者
Marino, Ines P. [1 ,2 ]
Zaikin, Alexey [2 ,3 ,4 ]
Miguez, Joaquin [5 ]
机构
[1] Univ Rey Juan Carlos, Dept Biol & Geol Fis & Quim Inorgan, Madrid 28933, Spain
[2] UCL, Inst Womens Hlth, London WC1E 6BT, England
[3] UCL, Dept Math, London WC1E 6BT, England
[4] Lobachevsky State Univ Nizhny Novgorod, Dept Appl Math, Nizhnii Novgorod, Russia
[5] Univ Carlos III Madrid, Dept Teor Senal & Comunicac, Madrid, Spain
来源
PLOS ONE | 2017年 / 12卷 / 08期
基金
俄罗斯科学基金会;
关键词
COMPUTATION; SCHEME;
D O I
10.1371/journal.pone.0182015
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] A Comparison of Monte Carlo-Based and PINN Parameter Estimation Methods for Malware Identification in IoT Networks
    Severt, Marcos
    Casado-Vara, Roberto
    del Rey, Angel Martin
    [J]. TECHNOLOGIES, 2023, 11 (05)
  • [2] Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods
    Didit B. Nugroho
    Takayuki Morimoto
    [J]. Computational Statistics, 2015, 30 : 491 - 516
  • [3] Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods
    Nugroho, Didit B.
    Morimoto, Takayuki
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (02) : 491 - 516
  • [4] Parameter Estimation with Mixture Item Response Theory Models: A Monte Carlo Comparison of Maximum Likelihood and Bayesian Methods
    Finch, W. Holmes
    French, Brian F.
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2012, 11 (01) : 167 - 178
  • [5] Markov Chain Monte Carlo-based Bayesian method for nonlinear stochastic model updating
    Ding, Ya-Jie
    Wang, Zuo-Cai
    Chen, Genda
    Ren, Wei-Xin
    Xin, Yu
    [J]. JOURNAL OF SOUND AND VIBRATION, 2022, 520
  • [6] Markov models for digraph panel data: Monte Carlo-based derivative estimation
    Schweinberger, Michael
    Snijders, Tom A. B.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) : 4465 - 4483
  • [7] A Bayesian Monte Carlo-based algorithm for the estimation of small failure probabilities of systems affected by uncertainties
    Cadini, F.
    Gioletta, A.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2016, 153 : 15 - 27
  • [8] A survey of Monte Carlo methods for parameter estimation
    David Luengo
    Luca Martino
    Mónica Bugallo
    Víctor Elvira
    Simo Särkkä
    [J]. EURASIP Journal on Advances in Signal Processing, 2020
  • [9] Monte Carlo Comparison of the Parameter Estimation Methods for the Two-Parameter Gumbel Distribution
    Aydin, Demet
    Senoglu, Birdal
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2015, 14 (02) : 123 - 140
  • [10] A survey of Monte Carlo methods for parameter estimation
    Luengo, David
    Martino, Luca
    Bugallo, Monica
    Elvira, Victor
    Sarkka, Simo
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2020, 2020 (01)