A Comparison of Monte Carlo-Based and PINN Parameter Estimation Methods for Malware Identification in IoT Networks

被引:1
|
作者
Severt, Marcos [1 ]
Casado-Vara, Roberto [2 ]
del Rey, Angel Martin [3 ]
机构
[1] Univ Salamanca, Campus Sci, Pl Caidos S-N, Salamanca 37008, Spain
[2] Univ Burgos, Escuela Politecn Super, Grp Inteligencia Computac Aplicada GICAP, Dept Matemat & Comp, Ave Cantabria S-N, Burgos 09006, Spain
[3] Univ Salamanca, Dept Appl Math, Salamanca 37008, Spain
关键词
PINN; Monte Carlo; parameter estimation; malware propagation; IoT networks; INVERSE PROBLEMS; MODELS; SECURITY;
D O I
10.3390/technologies11050133
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Malware propagation is a growing concern due to its potential impact on the security and integrity of connected devices in Internet of Things (IoT) network environments. This study investigates parameter estimation for Susceptible-Infectious-Recovered (SIR) and Susceptible-Infectious-Recovered-Susceptible (SIRS) models modeling malware propagation in an IoT network. Synthetic data of malware propagation in the IoT network is generated and a comprehensive comparison is made between two approaches: algorithms based on Monte Carlo methods and Physics-Informed Neural Networks (PINNs). The results show that, based on the infection curve measured in the IoT network, both methods are able to provide accurate estimates of the parameters of the malware propagation model. Furthermore, the results show that the choice of the appropriate method depends on the dynamics of the spreading malware and computational constraints. This work highlights the importance of considering both classical and AI-based approaches and provides a basis for future research on parameter estimation in epidemiological models applied to malware propagation in IoT networks.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks
    Marino, Ines P.
    Zaikin, Alexey
    Miguez, Joaquin
    [J]. PLOS ONE, 2017, 12 (08):
  • [2] A survey of Monte Carlo methods for parameter estimation
    David Luengo
    Luca Martino
    Mónica Bugallo
    Víctor Elvira
    Simo Särkkä
    [J]. EURASIP Journal on Advances in Signal Processing, 2020
  • [3] Monte Carlo Comparison of the Parameter Estimation Methods for the Two-Parameter Gumbel Distribution
    Aydin, Demet
    Senoglu, Birdal
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2015, 14 (02) : 123 - 140
  • [4] A survey of Monte Carlo methods for parameter estimation
    Luengo, David
    Martino, Luca
    Bugallo, Monica
    Elvira, Victor
    Sarkka, Simo
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2020, 2020 (01)
  • [5] Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods
    Didit B. Nugroho
    Takayuki Morimoto
    [J]. Computational Statistics, 2015, 30 : 491 - 516
  • [6] Estimation of realized stochastic volatility models using Hamiltonian Monte Carlo-Based methods
    Nugroho, Didit B.
    Morimoto, Takayuki
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (02) : 491 - 516
  • [7] Monte Carlo-Based Reliability Estimation Methods for Power Devices in Power Electronics Systems
    Novak, M.
    Sangwongwanich, A.
    Blaabjerg, F.
    [J]. IEEE OPEN JOURNAL OF POWER ELECTRONICS, 2021, 2 : 523 - 534
  • [8] Monte Carlo-Based Reliability Estimation Methods for Power Devices in Power Electronics Systems
    Novak, M.
    Sangwongwanich, A.
    Blaabjerg, F.
    [J]. IEEE Open Journal of Power Electronics, 2021, 2 : 523 - 534
  • [9] Monte Carlo comparison of estimation methods for the two-parameter lognormal distribution
    Pobocikova, Ivana
    Sedliackova, Zuzana
    Michalkova, Maria
    Kucharikova, Lenka
    [J]. XXIII POLISH-SLOVAK SCIENTIFIC CONFERENCE ON MACHINE MODELLING AND SIMULATIONS (MMS 2018), 2019, 254
  • [10] Monte Carlo-based filtering for fatigue crack growth estimation
    Cadini, F.
    Zio, E.
    Avram, D.
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2009, 24 (03) : 367 - 373