Prior Geometry Guided Direct Regression Network for Monocular 6D Object Pose Estimation

被引:0
|
作者
Liu, Chongpei [1 ]
Sun, Wei [1 ,3 ]
Zhang, Keyi [2 ]
Liu, Jian [1 ]
Zhang, Xing [1 ]
Fan, Shimeng [1 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Sichuan Univ Pittsburgh Inst, Chengdu 610207, Peoples R China
[3] Hunan Univ, Shenzhen Res Inst, Virtual Univ Pk, Shenzhen 518063, Peoples R China
基金
中国国家自然科学基金;
关键词
Object pose estimation; Prior geometry; Direct regression;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Monocular 6D object pose estimation aims to estimate 6 degrees of freedom pose of known objects, gaining attention. Correspondence-based methods are the mainstream methods. They analyze the geometric information in 2D RGB images and establish 2D-3D correspondences to calculate 6D pose. However, pose estimation accuracy suffers from that 2D RGB images can not provide enough geometric information. To solve this problem, We propose a novel prior geometry guided direct regression network (PGDRN), which fully uses the prior geometric knowledge contained in given object models. Precisely, we extract the prior feature from the object model and concatenate the color feature extracted from 2D images to construct the prior-color feature, aggregating the prior and viewpoint-specific geometric information, making our method's accuracy and robustness. Experiments on two well-known LM-O and YCB-V datasets show that our method significantly outperforms state-of-the-art (SOTA) methods.
引用
收藏
页码:6241 / 6246
页数:6
相关论文
共 50 条
  • [41] Segmentation-driven 6D Object Pose Estimation
    Hu, Yinlin
    Hugonot, Joachim
    Fua, Pascal
    Salzmann, Mathieu
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3380 - 3389
  • [42] RobotP: A Benchmark Dataset for 6D Object Pose Estimation
    Yuan, Honglin
    Hoogenkamp, Tim
    Veltkamp, Remco C.
    SENSORS, 2021, 21 (04) : 1 - 26
  • [43] 6D Object Pose Estimation Based on the Attention Mechanism
    Zhou, Guanyu
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [44] Fundamental Coordinate Space for Object 6D Pose Estimation
    Wan, Boyan
    Zhang, Chen
    IEEE ACCESS, 2024, 12 : 146430 - 146440
  • [45] Sparse Keypoint Models for 6D Object Pose Estimation
    Sadran, Emal
    Wurm, Kai M.
    Burschka, Darius
    2013 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR 2013), 2013, : 307 - 312
  • [46] Open-vocabulary object 6D pose estimation
    Corsetti, Jaime
    Boscaini, Davide
    Oh, Changjae
    Cavallaro, Andrea
    Poiesi, Fabio
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 18071 - 18080
  • [47] Focal segmentation for robust 6D object pose estimation
    Yuning Ye
    Hanhoon Park
    Multimedia Tools and Applications, 2024, 83 : 47563 - 47585
  • [48] Single-Stage 6D Object Pose Estimation
    Hu, Yinlin
    Fua, Pascal
    Wang, Wei
    Salzmann, Mathieu
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2927 - 2936
  • [49] ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED MESH RECONSTRUCTION
    Castro, Pedro
    Armagan, Anil
    Kim, Tae-Kyun
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4147 - 4151
  • [50] Global Hypothesis Generation for 6D Object Pose Estimation
    Michel, Frank
    Kirillov, Alexander
    Brachmann, Eric
    Krull, Alexander
    Gumhold, Stefan
    Savchynskyy, Bogdan
    Rother, Carsten
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 115 - 124