Prior Geometry Guided Direct Regression Network for Monocular 6D Object Pose Estimation

被引:0
|
作者
Liu, Chongpei [1 ]
Sun, Wei [1 ,3 ]
Zhang, Keyi [2 ]
Liu, Jian [1 ]
Zhang, Xing [1 ]
Fan, Shimeng [1 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Sichuan Univ Pittsburgh Inst, Chengdu 610207, Peoples R China
[3] Hunan Univ, Shenzhen Res Inst, Virtual Univ Pk, Shenzhen 518063, Peoples R China
基金
中国国家自然科学基金;
关键词
Object pose estimation; Prior geometry; Direct regression;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Monocular 6D object pose estimation aims to estimate 6 degrees of freedom pose of known objects, gaining attention. Correspondence-based methods are the mainstream methods. They analyze the geometric information in 2D RGB images and establish 2D-3D correspondences to calculate 6D pose. However, pose estimation accuracy suffers from that 2D RGB images can not provide enough geometric information. To solve this problem, We propose a novel prior geometry guided direct regression network (PGDRN), which fully uses the prior geometric knowledge contained in given object models. Precisely, we extract the prior feature from the object model and concatenate the color feature extracted from 2D images to construct the prior-color feature, aggregating the prior and viewpoint-specific geometric information, making our method's accuracy and robustness. Experiments on two well-known LM-O and YCB-V datasets show that our method significantly outperforms state-of-the-art (SOTA) methods.
引用
收藏
页码:6241 / 6246
页数:6
相关论文
共 50 条
  • [21] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [22] An efficient network for category-level 6D object pose estimation
    Sun, Shantong
    Liu, Rongke
    Sun, Shuqiao
    Yang, Xinxin
    Lu, Guangshan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (07) : 1643 - 1651
  • [23] An efficient network for category-level 6D object pose estimation
    Shantong Sun
    Rongke Liu
    Shuqiao Sun
    Xinxin Yang
    Guangshan Lu
    Signal, Image and Video Processing, 2021, 15 : 1643 - 1651
  • [24] GeoPose: Dense Reconstruction Guided 6D Object Pose Estimation With Geometric Consistency
    Wang, Deming
    Zhou, Guangliang
    Yan, Yi
    Chen, Huiyi
    Chen, Qijun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4394 - 4408
  • [25] YOLO-6D-Pose: Enhancing YOLO for Single-Stage Monocular Multi-Object 6D Pose Estimation
    Maji, Debapriya
    Nagori, Soyeb
    Mathew, Manu
    Poddar, Deepak
    2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 1616 - 1625
  • [26] Joint Optimization of the 3D Model and 6D Pose for Monocular Pose Estimation
    Guo, Liangchao
    Chen, Lin
    Wang, Qiufu
    Zhang, Zhuo
    Sun, Xiaoliang
    DRONES, 2024, 8 (11)
  • [27] Region Pixel Voting Network (RPVNet) for 6D Pose Estimation from Monocular Image
    Xiong, Feng
    Liu, Chengju
    Chen, Qijun
    APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 15
  • [28] Spatial and temporal consistency learning for monocular 6D pose estimation
    Zhang, Hong-Bo
    Liang, Jia-Yu
    Hong, Jia-Xin
    Lei, Qing
    Liu, Jing-Hua
    Du, Ji-Xiang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
  • [29] Object Level Depth Reconstruction for Category Level 6D Object Pose Estimation from Monocular RGB Image
    Fan, Zhaoxin
    Song, Zhenbo
    Xu, Jian
    Wang, Zhicheng
    Wu, Kejian
    Liu, Hongyan
    He, Jun
    COMPUTER VISION - ECCV 2022, PT II, 2022, 13662 : 220 - 236
  • [30] Attention-guided RGB-D Fusion Network for Category-level 6D Object Pose Estimation
    Wang, Hao
    Li, Weiming
    Kim, Jiyeon
    Wang, Qiang
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 10651 - 10658